Contains occasional light type

```
MRS PRICE
ZSSCRIPTORS
```

4P-\$0.83 HC-\$6.01 Plus Postage.
Curriculua: Educational Research; *Elementary Education; Elementary School Bathematics; Elementary School Science; *Integrated Curriculum; *Hathematics saucation; *Program Evaluation; Science Course Improvement Project: *Science Education

ABSTRACT

This study is one of three designed to evaluate the effectiveness of the Unified Science and Mathematics for Elementary Schools (0SERS) program. The school study is essentially a discussion of the link between program dissemination and student experience, a discussion of the form taken by uSmes in schools and classrooms. Part one is a statistical study designed to answer such questions as: $B O=$ much time does oSkZS take? How much instruction in basic skills is afforded? Under what conditions is instruction in basic skills maximized? What is the actual relationship between group work. hands-on activities, and problem-solving processes, and success of sessions? Part two is nonstatistical. It consists of a general examination of OSMES at five schools. The general state of JSBES is examined from both a pedagogical and a politicai point of \quad piev. . (au thor/BB)

[^0]

USIFIED SCIENCES AND MATHEMATICS FOR ELEMENTARY SCHOOLS: wathematics and the Natural, Social, and Communication Sciences in Real Problem Solving

This report was prepared with the suphort of the National Science Foundation, Grant No. SED-6901071. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors. and do not necessarily reflect the views of the National Science Foundation.

Copyright.(C) $1978 \begin{gathered}\text { Education Development Center, Inc. } \\ \text { All rights reserved. }\end{gathered}$

This stuay is one of those originally planned by the USMES research staff:

Carolyn Clinton Arbetter, Coordinator for Ree, rch Studies Daniel S. Cooper, Senior Research Associate George H. Stalker, Research Associate , Felicia DeMay Weitzel, Research Associate Nancy Gardner Weiner, Administrative Assistant for Research Studies Phyllis A. Gentile, Secretary/Data Processing Assistant

Earle L. IOmon, USMES Project Director, was on-site investigator for this study.

Phyllis Gentile helped me design a system for entering Cläs̀s, Session Report data onto computer files, and then actually entered the data from over one thousand reports rapidly and accurately.

Martha Allegro typed this report in its final form.
Daniel Cooper read Part I of this report, and made a number of very helpful suggestions. I have followed almost (but not quite) all of these; it goes without saying that the arguments in Part I aremine, and that he is not responsible for any of the conclusions expressedin this study.

Betty Beck read Part I of this study, and made several helpful suggestions.•

Nancy Weiner contributed a helpful perspective to the design of the on-site teacher and principal interviews.

George H. Stalker
1 May 1978
DESCRIPTION OF THE STUDY 1
PART I: STATISTICAI ANALYSIS 5
Introduction to statistical analysis of report data 6
USMES Usage in the Classrocm: A general description 10
USMES and Basic Skills 24
Summary 54
Successful USMES 55
Summary 70
PART II: INTERVIEWS 71
Case Study of Five USME Schools: Introduction 72
The Five Schools 73
Srhool A 73
School B 76
School C 78
School D 80
School E 82
Summary 83
Interpretive Issues 84
USMES and the design lab 84
Teacher's Aides 86
The Scheduling of USMES Units 88
USMES and the local school district 94
USMES and its effects 97
Summary 99
Speculative Issues 100
USMES and Parents 100
Teachers' conceptions of USMES and real problem solving 103
Teachers" opinions concerning USMES 108
USMES and the "suitable student" 111
USMES and the "suitable school environment 112
Summary 114
APPENDIX: Interview questions 115

DESCRIPTION"OFTHESTUDY

Introduction

The USMES Project conducted three studies in 1976-1977 to learn more about USMES resource teams, students, and --hool implementations. The USMES Team Study examined the USMES Resource Team Program and the factors that influenced how effective selective teams were in disseminating and implementing USMES. The USMES Student Study examined certain strategies for directily assessing the effects of USMES on students. Both the Team Study and the School Study are published under separate covers.

This volume is a report of the USMES School St idy. The School Study is essentially a discussion of the link between program dissemination and student experience: a discussion of the form taken by USMES in schools and classrooms.

The plan of this study is to examine this link from two distinct points-of-view. Part I is a statistical investigations, designed to find general answers to centrally important questions concerning the use of USMES in the classroom. How much time does USMES take? How much instruction in basic skills is afforded? Under what conditions is instruction in basic skills maximized? What is the actual relationship between group work, hand-on activities, and problem-solving processes, on the one hand, and "success" of sessions, on the other? As a basis for this statistical examination, 1043 individual USMES sessions are analyzed.

Part II of this study is non-statistical. It consists of a broad general examination of USMES as practiced' at each of five different schools (schools "A" through "D" of the student study, and one further school, designated school "E"). The general state of USMES at each school, from both a pedagogical and a political point of view, is assessed; then certain particularly significant issues are discussed "across" the five schools.

Ideally, the two main parts of this study are complements. The first seeks, as far as possible, to "smooth out" individual variations from teacher to teacher, school to school, and district to district. The unit of analysis -is the USMES session; many teachers, working in schools, are studied, The
second seeks rather to highlight individual variations. It is limited to five schools, and most of the emergent "conclusions" are hypotheses concerning the causes and effects of local variations among schools.

Both branches of the investigation are intended to be useful in im-. proving local implementations of-USMES. Part 1 is intended to be helpful. for planning and documentation. Part II, it is hoped, will point to ways for making USMES as pleasant, rewarding, and effective as possible in a world of teachers, principals, classrooms, custodians, and concerned parents. It was necessary that two different populations be studied, chiefly because of limitations on time and funding. This fact is, of course, a disappointing one, since one "obvious" thing to do would be to incorporate statistical generalizations in our discussion of the schools of Part II. However, the need to employ already-available data for Part I made this impossible.

Part 1 Statistical Analysis

Statistical Analysis of USMES Class Sessions: Introduction

From approximately 1 January 1975 to 30 June 1976, USMES teachers in the field were encouraged to report on their classroom experiences by means of a standard form known as the Class Session Report. The purpose of this form was not, primarily, to amass statistical data. Rather, it was designed to afford USMES central office staff direct, informal "feedback" on the progress of USMES challenges in the field. Participating teachers were, for the most part, members of USMES resource teams. A small payment was provided to compensate respondents for the time they devoted to making these reports.

In alt, 1043 valid reports were received. (A "valid" report, for these purposes, is any report belonging to a challenge of five or more separate sessions.) Fifty individual teachers were represented; these teachers submitted from. 5 to 76 separate session reports. Seventy-two challenges, sequences of sessions progressing towards a solution to some real problem, were reported on. Members of 32 resource team components reported.

The following is a facsimile (front and back) of the form employed:

USMES Class Session

report

Name: \qquad Sessio. Date: \qquad
Grade Level(s): \qquad School Principal: \qquad
School: \qquad
\qquad \square Resource Team Member

7 USMES Unit (please check one)
1

Independentiy developed unit, whose challenee is: \qquad
2
LiEMES Sessicia trof:ic.
(a) Length of USVES session: \qquad AV/PN to \qquad AMPA.
(b) Number of students in class: \qquad , number actively involved: \qquad
(c) Other acturs present (please sive number of each):
\qquad student teachers \qquad parents coher seachers atces \qquad
\qquad resource teachers \qquad ather visitors:
\qquad
12 groups: \qquad Yes, \qquad No; on different tasks: \qquad Yes: \qquad No. Flease describe brieily the small group acilvities:
(e) Dic the studenes paricipate in a ciass discuesion: \qquad Yes, \qquad ios

on how recent work reiates to solvirg the chalienge: \qquad ies, \qquad : io, on Sutura plans: ___Yes, _ No. Please-cescribe brienig the class discussion:
\qquad No：
in the classrocm（please give mumer of students）：
In a scparate Design lab room（please gave number of students）： \qquad
Please deacribe brienly these construction activities：

Problem Solving processes（pleas？check those which best describe this session＇s work by one or more groups of students）
－Identifyins and defining the problem

Deciding on information and investigations needed
－Detemining what needs to be done IrstDeciding on the best way to obtain the information that is needed
Carrying out the data collection procedures
— Detecting Maws in the data githering process or erwors in the data itself

Organizing，analyzing，and interpreting the data
 Suggesting possible solutions based on the data collected
－Tryins out various solutions and evaluating the results
＿＿Working to implement the solution decided on by the class

4Basic silils and（：reepts（please list those that were used in this session＇s work by at least one group of students） mathematics sidils：
language arts skills： \qquad science concepts： social stucties iuroepts： \qquad
5

Strongly Agree	Agree	Disagree	Strongly Disagree
1	2	3	4
1	2	3	4
1	2	3	4
1	2	3	4
1	2	3	4
1	2	3	4

 Usc of ?nmer
 If I had no used USNES today i would bave unod the time for \qquad whole class work， \qquad Grup rovik， \qquad 1n－ da：ンさà biv， \qquad seat wort， \qquad －ands－cn acこさなささes， \qquad other：

P Conments（please use extra sheet for your comments）

The form shown above, though not designed to collect statistical information, is actually quite well adapted to doing so. Most of the process of adaptation is simply a matter of assigning missing values correctly. Specifically, Items (2d), (2e), and (2f) require wellconsidered logical algorithms to distinguish between negative and missing responses, and to detect anomalies resulting from thi" "hierarchized" question structure. For example, if a respondent to Item (2e) indicates that students did not participate in a class discussion but did discuss future plans, Item (2e) is rejected; if, however, a respondent does not indicate whether students participated in a class discussion, but does state that students discussed future plans. class discussion is constructed to have. taken place.

Item (4), Basic Skills and Concepts, presents no real problem of tallying, since the mere presence or absence of an entry in each category is all that is recorded.

Item (5), "How Do YJu Feel About This USMES Session?" presented some problems because an early form of the Class Session Report (not shown) offered' a different array of response options under Item (5). The early form offered four categories of response: strongly agree, uncertain, disagree, and strongly disagree; the later form (illustrated) offered four dirferent categories: strongly agree, agree, disagree, and strongly disagree. About 100 reports use the early form, and the remainder use the later!form. Our method has been to collapse all replies into two categories: agree and disagree. Replies of "uncertain" are not counted.

Despite its obvious shortcomings, Class Session Report data tells us a great deal about what really happens when USMES is used in the classroom. Findings will be presented in the following manner:

- In Section 4, descriptive statistivs wili be presented. That is, mean values, totals, and rudimentary frequency tabulations will be given. . The purpose of this section is to familiarize the reader in a general way with the body of data being analyzed, and with the extent and scope of a "typical" USMES class session.
- In Section 5, we will explore the relationship between the USMES experience and basic skills instruction.
- In Section 6, we will investigate the effects of certain pragmatic variables (session lengtr., class sizze, etc.) on the USMES experience, in an attempt to formulate some rough guidelines to-aid the teacher in providing optimal USMES to his/her students.

Thus, the following sections appear in Part I, below:
Section 4, "USMES Usage in the classroom," page 10.
Section 5, "USNES and basic skills," page 24; summary, page 54.
Section 6, "Successful USMES," page 55: summary, page 70.

The rabolation of Class Session Reports as described in the previous session yields，first of all，a set of interesting descriptive statistics on usmes usage in the classroom．The tabulations reccrded below should serde the reader both as a．general introduction to the sort of data which may se secured by analyzing Class Session Report tesponses，and as an introcuction to USNES activities．

Employment of usues units
The following tabulation reports exactiv winch units were reported on by the 1043 responcentis，and how often each unit was employed：

Erequency of empiovment sor aly units（n＝1043）

ぜごニ	Sessions belc	Percenc of total
3icycie Transporcaution	25	2.33
Glassroom Sesigx	75	7.5
Classriom Managener：	ε	0.3
Consumer Researci	Iع2	25.5
こescribing Reozie	3 E	3.6
Incepencentiy Designee	32	3.1
Desighing for tuman Exo	7	0.7
Sice Desigr．	20	1.0
Geteing Thexe	IS	3.4
Growing Elanes	7 c	7.5
Iunch ijnes	25	2．7
Nancfacturing	こと¢	25.7
Mass Comunic＇${ }^{\text {cons }}$	ε	0.8
Nȧwre Sxemis	39	3.7
Orientation	$4{ }^{2}$	4.0
Play man Desicn and US	T	－ 2.3
Protecting Ercperty ．	37	－ 3.5
School Suppines	Ie	2.5
Setool 200	$1: 0$	10.5
SOEf Drink	25	2.4
Ways to Learn／a dac：	85	8.2
Weather Precictions	22	2.1
．		，
Totais	248	100.0

The reader should understand that the numbers tabulated in the table above. refer rot to whole challenges conducted, but to individual class sessions heid. Thus, for example, 110 classes wera helar in an unspecified number of School zoo challenges.

It is clear from the tabulation above that some units were used a great deal more than others. However, the reader is cautioned that mostused units were not alwavs rated most suczessful by the teachers using them, and that much of the variation in frequency-of-employment above results from the fact that some unit's were made available by USMES central office much earlier than others.

Activities

\dot{A} tebulation of the frequency of various activities carried out in the course of USNES sessions appears beiow:

The reader will note, in the tabulation above, that the n varies appreciably from item to item. This is a reflection of the fact that not all questiors on the form were answered by all respondents. Also, the following genemai observations can be made:

- werk in smail groups occurred very frequently (about 3/4 of the time)
- construction activities took place in about $1 / 2$ of the sessions
- constraction in the classroom was considerably more common than construction in design lab facilities, and accounted for over 60\% of the total construction activities
- class discussion took place in about 80% of the sessions

USMES classes

USMES classes varied wideìy, both in class size and in the number of students in each class direct? F involved.in USMES activities. The tabulation below gives exact information:

SEuc̉ents in USMES classes

The above table is interesting chiefly for two reasons:

- it shows that very large and very small groups can be managed;
- it shows that, on the averace, most (about 90\%) of the students in any class where USMES is being taught are involved in the - challenge.

The tabulations below indicate the grade levels of the USMES classes reported on, and the range of grade levels present at each session.

Range of grade levels in USMES classes ($n=1038$)

Levels in class	Sessions	Frequency (percent)	Cumulative frequency (percent)
1	816	78.6\%	78.6\% ${ }^{\circ}$
2	201	19.4	98.0
3	21	2.0	100.0
Total	1038	100.0	100.0

The reader should note that most USMES classes were at grade levels 4 through 6, and most sessions included students of only one grade level. f(For purpo'ses of this study, "grade level" is tabulated at the mid-level of a three-level class, and the lower level of a two-lavel class.)

One common concern of newly trained USMES teachers is that they may be unable, unaided; to supervise USMES class sessions in which diverse activities and group tasks are being carried out. The following tabulation indicates how many USMES sessions were carried out with "visitors". (generally helpers rather than observers), and how many without:

USMES sessions with visitors present $(n=1043)$		
Situatior	Frequency	
No visitors	1050	81.5%
One or more visitors	103	18.5
Totals	1043	100.0

The reader can see that about $3 / 4$ of the USMES sessions were carried out unassisteg.

Scheduling

One of the most significant issues in introducing the USMES curriculum into a particular school environment is scheduling. Some issues are:

- how many sessions are needed for a given challenge?
- how frequently are sessions hela?
- what is the length of most sessions?
- what other possible learning activities are given up to make time for USMES activities?

The following table gives statistics on total challenge length (that is, how many sessions make up a particular problem-solving "challenge").

The figures above are based on the 1043 sessions of the study, not the 72 challenges. For example, the table shows that 15.7% of all sessions conducted belong to challenges having between 41 and 60 sessions in them; it is not the case that 15.7% of the challenges contained between 41 and 60 sessions.

The frequency with which USMES sessions are held has long been a matter of deep concern to central staff members. The following tabulation shows how frequently USMES sessions were conducted'among respondents.

Frequency of sessions ($n=891$ sessions)*

In the table above, the first category is self explanatory; the second refers to cases where one or more, but less than two, sessions per week were held in.the course of a challenge. - The third refers to situations where two or more but less than three, challenges were held, etc." It is of some interest that general practices displayed here show a smaller frequency of USMES sessions than those recorded by respondents to the questionnaire for team-trained teachers (reported in the USMES Team Study). The discrepancy may result from the fact that some sessions (especially short sessions) were not reported on, and figures here were computed from the actual dates of classes for which reports were submitted.

Session length (in minutes), among the sessions reported on, is tabulated below.

One issue, pertaining to the pedagogical "cost" of doing USMES, is where the necessary class time "comes from." The tabulation below lists six categories of activities replaced by USMES activities.

In the tabulation above, the first column shows the number of USMES sessions which took time away from the activity listed; the second column shows what percent of all sessions (that is, 1043 sessions) took time away from the particular activity, the tinird column shows the relative degree to which each activity, by comparison to the other five, was curtailed to make time for USMES sessions.

Employment of basic skills

One issue which of great interest to developers and implementers of USMES alike is the degree to which USMES participation fosters the development of basic skills. Much will be said on this subject later in . this report. For the moment, it will suffice to tabulate the frequency with which, according to teachers' reports, USMES sessions afforded training in basic skills. The skills are tabulated within four major categories.

USMES sessions affording training in basic skills ($n=1043$)

The tabulation above is a reasonably conservative one, since, due to the "open-endea" format of the USMES Class Session Report form, respondents were obliged to specify which skills within each of the four categories. were covered in each session.

Since it is one of the properties of USMES that it affords training in more than one basic skill category in the course of a single session, a further tabulation was made of the number of basic categories (out of the four shown above) exercised in the course of each USMES session:

It is noteworthy that, in about 50% of the sessions, exercise in three or more different categories of basic skills (as classified above) was afforded.

Problem-solving Processes

The central issue of USMES, in the minds of its developers, is the degree to which classroom experience actually affords training in problemsolving. Accordingly, respondents were asked to report on each session with respect to the following ten processes:

DISCUSSION PROCESSES

- Identifying and defining the problem.
- Deciding on information and investigations needed
- Determining what needs to be done first
- Deciding on the best way to obtain the information that is needed
- Carrying out the data collection procedures
- Detecting flaws in the data gathering process for errors in the data itself
- Organizing, analyzing, and interpreting the data
- Suggesting possible sclutions based on the data sollected
- Trying out various solutions and evaluating the results

IMPLEMENTATION PROCESSES

- Working to implement the solution decided on by the class.

The employment of these processes is tabulated below, first in terms of the three major categories, and then in terms of the individual processes.

Emplcyment of problem solving processes ($n=1043$)

Identifying and defining the problem
 387

Deciding on information

 and investigations needed . 360 34.5 .Determining what needs to be done first 403
38.6

Deciding on the best way
to obtain the information that is needed 353
33.8

Carrying out the data collection procedures 284

Detecting flaws in the data gathering process or errors in the data itself 213
Organizing, analyzing, andinterpreting the data281
Suggesting possiblesoiutions based on thedata collected28227.2

Trying out various solutions and evaluating the results 305

Working to implement the solution decided on by the class

$$
449
$$

Teacher assessment of the sessions
In order to secure a more general understanding of how successful each session had been, teachers were asked how they "felt" about each session, in terms of the foilowing criteria:

Student interest

- Progress on the challenge
- Depth or superficiality of investigation
- Use of subject area skills and concepts
- Experience in developing interpersonal relations
- Relative automomy and self-motivation of the class.

The following is a tabulation of teacher assessments of sessions according to each of these six criteria.

Teacher assessment of session by various criteria
Percent of session
Criterion reports which were

The students seemed to be quite interested in their work.
97.5:3 ($n=1012$)

Overall, they made substantial progress on the challenge
91.25 ($n=969$)

The investigations have not beer superficial
81.5% 亿 $=922$)
Students used subject area skills and concepts
$83.5 \% \quad(n=887)$

Many students had experiences that should help develop their interpersonal relations
$94.8 \% \quad(n=905)$
I did not have to provide strong direction

```
Overall teacher assessment of session by all criteria ( }n=961\mathrm{ )
```

Number of positive
responses*
(MAX E 6)

0
*See preceding table for separate listing of 6 criteria.

The reader can see from the tabulation above that two-thirds of the sessions wo =e positively judged, by at least sive out of six criteria.

USMES AND BASEA＇SKILIS

A particularly frgent concern in the minds of administrators，cur－ riçulum developers，and parents alike，is that basic skills and concepts in areas such as thathematics，language arts，science，and social studies be well taught，clearly reported，and accurately accounted for．From very early in the Iife of the USNES project，its developers have believed that processesiof incuiry inherent in real problem－solving provide not only a desirabledegree of student motiration，but also a context for effective and integrated presentation of basic skills and concepes．

Any attempt te contirm or deny，by objective means，this plausible but largely subjective conviction，must deal with sobering difficulties， both practical ana theoreticai：Among them are the following：
－The use of stanaraized tests，an obvious nethod for gaining infomainion about student achievement in basic skills，presents methodological problems．First，the scores of ail students， whether or not they receive USMES training，are constantly changing as the students grow．符解，zesting students＂before and afrer＂they receive the usmes＂treatment＂is not，by in large， a useful methoc．Second，there are sufficiently many variables （such as ceachez，school，griades，＂tracking＂，etc．）which have a dramatic effect on standardized test scores，that also directly affect the administrbtion of the uSMES curgiculum，that even the grossest effeces of baṣic sxilis instruction through uswes may be obscurec．
－The ise of ciassrocm onservers，another obvious methoi，presents paacticai problems．Eirst，it is costiv．Second，observers must deal with the disterent ways in when basic skills instruction is ciassified in different situations，＂and merge results from different schoois．Rurchez，Eieze is some evidence（containan in this study） that the presence of a visitor somewhat depresses the level ce basic simils instruction in an USNES ciassroom．
－Sel̇－evaluation by Eeachers can be usec；however，it may not give valid infomation，at leas concerning the absolute numer of skills treater in each session．That is，since the basic skilis instruc－ tion entailed in real groblem－solving challenges is dramir and not deterministic，assessment of skilis gnd concepts treaced must be carfiee out retroactiveiy for each session．Thus，indivicual teachers may be ancined to report ail allusions，howeve perigheral，to basic skilis and concepts，thus generating inflated statistics on tite amount．cE Dasic skinls instruction．
－When basie stizis Enstuction takes place in an usmes session．it is disficul zow aryote to assess whether this has happened＂because oEn or＂in spite oE＂the distinceive features of USVES reai problem－ solving．It migh ze azged that sy activizymich places young
children in a room with a skilled teacher will result, perforce, in some sort of basic instruction. Thus, it is difficult to compare the level of basic skills instruction in an USMES session with that which would inave been provided had the distinctive elements of the uSMES curriculum not been employed.

In view of these problems, the present study takes the following approach. Self-reporting is used; however, the USMES experience is separated into several aspects, and the frequency of skills instruction in the presence of each separately analyzed. Thus, the relative frequency of basic skilis instruction in the presence of each aspect can be compared with the frequency of basic skills instruction in its absence. When this is done, self-reporting techniques can be employed with increased confidence, since any "inflation" of the absolute. frequencies is automatically corrected for. Thus, with respect to each aspect, both a control group and a treatment group exist within our sample of USMES sessions. Naturally, the statistical results of this sort of investigation must not be misused. In particular, although tests of.significance are used throughout, they should not be taken to demonstrate causal relationships between individual aspects and particular effects. It is part of the nature of the USMES experience that these indiviaual aspects occur interdependeistly. The task of discriminating among causal relationships on an indivicual basis goes beyond the scope of the available data sample.

An interesting conceptual problem in the treatment of this data is the cnoice of unit-of-analysis. We have chosen, for various reasons, to employ individual class sessions trather than, say, individual teachers, individual schools, particular USMES units, of completed whole challenges) as our unit-of-anaiysis. There can be no doubt that this method has its drawbacks. . For example, it.might be argued that our analysis really explores the effectivemess of varous "methods" of teaching USMES (methods incorporating particular aspects of USMES to varying degrees) and that to treat thirty sessions given by a particular teacher as sampling thirty aifferent methods is to generate an uncealistically large n which leads $=0$ inflated results in tests of " significance. It seems to us, however, that we are not in fact analyzing "methocs" of teaching uSmes; "methods" actually used by teachers for conducting uSMES challenges are far more than mere ways of maximizing the apparent "success" of each individual session. Likewise, since self-reporting is used, systematic errors of assessment (raEer error) would have far more serious distorting effects if any unit-of-analysis which lumped together reports mace by the sane incivicual that is, any of the other possible units -̇ste己 abovel weze useさ.

The zroblem of teacher jias (since teachers were being paid by the USMES project to report on the \quad sessions) is interesting but probably less serious. Presumably there was a positive bias; this can hardiy be debated. Presumably teachers would bonsciously or otherwise) be inclined to report whatever they thought the USNES central staff wanted =o hear. However, neither the reporting teachers in the fiela nor the central staff members aministering the repor= system souic have known that, months later, these open-ended reports
would be subjected to statistical analysis for contrests in observed success under different circumstinces. At the time reports were gathered, ail classes were regarded as receiving the "USMES treatment" to the same degree. Thus, though bias may have existed, it scems unlikely that it could have distorted the results we are particularly concerned about.

Resporses to the Class Session Report allow us to break down the USMES experience either in terms of problem-solving processes, or in terms of classroom activities.

BROKEN DOWN BY PROBLEM-SOLVING PRCCESSES:

I (Discussion Processes)

- Identifying and defining the problem.
- Deciding on information and investigations needed.
- Determining what needs to be done first.
- Deciding on the best way to obtain the information that is needed. (Investigation Processes)
- Carrying out the data collection proceaures.
- Detecting flaws in the data gathering process for errors in the data itself.
- Organizing, anaiyzing, and interpreting the data.
- Suggesting possible solutions based on the data collected.
- Trying out various solutions and evaluating the results.

(Implementation Processes)

- Working to implement the solution decided on by the class.

BROKEN DOWN BY CIASSROOM ACTIVITIES:

- Student work in small groups.
- Student participation in class discussion.
- Student participation in class; a discussion on group tasks.
- Student participation in a class discussion of how recent work relates to solving the challenge:
- Student qarticipation in a.class discussion of future plans.
- Student wori on construction activities.

USMES (Viewed as a Collection of Problem-Solving Processes) and its Relation. to Basic Skilis Instruction

The schemata given above provide for ten two-way partitionings of the Class Session Report data according to problem-solving processes. Training in basic skills and concepts, as reported in section 4 of the Class Session Report, can be assessed according to each partitioning. One expects the results $=0$ be quite "conservative," since the format of Section 4 insists on a response in terms of specific skills and concepts, under the following headings:

- Mathematics Skills
- Langüage Arts Skills

Science Concepts

- Social Studies Concepts

In tabülating, we have recorded only whether any mathematics skills instruction, language arts instruction, etc., takes place within a given session, and do not which skilis, or how many skiIls are actually cited. This will, we hope, "smooth" differences in terminology among schools and teachers.

We recall from the previous section of this report that the overall frequency of instruction in each of the four skills categories is as follows:

USMES sessions affording training in basic skills (n=1043)

What follows i.s essentially a tabulation of the same statistic, except that it is reported separately for subgroups in which each of the ten problemsolving processes is, or is not, employed. Thus, for example, considering the problem-solving process "Identifying and defining the problem," we sree that there are not merely four percentages given (one for each basic skill type), but eight: one for each basic skill type, both in the presence and in the absence of the process "identifying and defining the problem.". Here is the tabulation:

Percent of Sessions Affording Exercise in Basic Skills and Concepts; with and without selected Problem-Solving Processes (n=104j)

Processes		Percent of Sessions Exercising Mathematics Skills*	Percent of Sessions Exercising Language Art.Skills*	Percent of Sessions Exercising Science Ccncepts*	Percent of Sessions Exercising Social Studies Concepts*
Identifying and defining the problem	no. yes	$\begin{aligned} & 70.18 \\ & 62: 0 \end{aligned}$	$\begin{aligned} & 62.98 \\ & 70.8 \end{aligned}$	$\begin{aligned} & 48.0 \% \\ & 48.1 \end{aligned}$	$\begin{aligned} & 58.4 \% \\ & 69.0 \end{aligned}$
Deciding on information and investigations needed	$\begin{aligned} & \text { no } \\ & \text { yes } \end{aligned}$	$\begin{aligned} & 68.2 \\ & 65.0 \end{aligned}$	$\begin{aligned} & 61.2 \\ & 74.7 \end{aligned}$	$\begin{aligned} & 47.0 \\ & 50.0 \end{aligned}$	$\begin{array}{r} 6 C .0 \\ .66 .7 \end{array}$
Determining what needs to be done first	$\begin{aligned} & \text { no } \\ & \text { yés } \end{aligned}$	$\begin{aligned} & 67.5^{\prime} \\ & 66.5 . \end{aligned}$	$\begin{aligned} & 63.3 \\ & 70.0 \end{aligned}$	$\begin{aligned} & 48.0 \\ & 48.1 \end{aligned}$	$\begin{aligned} & 61.9 \\ & 63.0 \end{aligned}$
Deciding on the best way to obtain the information that is needed	$\begin{aligned} & \text { so } \\ & \text { yes } \end{aligned}$	$\begin{aligned} & 66.4 \\ & 68.6 \end{aligned}$	$\begin{aligned} & 64.4 \\ & 68.8 \end{aligned}$	$\begin{aligned} & 48.3 \\ & 47.6 \end{aligned}$	$\begin{aligned} & 60.7 \\ & 65.4 \end{aligned}$
Carrying out the data collection procedures	$\begin{aligned} & \text { no } \\ & \text { yes } \end{aligned}$	$\begin{aligned} & \hline 60.7 \\ & 84.2 \end{aligned}$	$\begin{aligned} & 64.3 \\ & 70.1 \end{aligned}$	$\begin{aligned} & 48.8 \\ & 46.1 \end{aligned}$	64.3 57.0
Detecting flaws in the data gathering process or errors in the data itself	no	63.4 81.7	64.2	47.8 48.8	62.4
Organizing, analyzing, and interpreting the data	$\begin{aligned} & \text { no } \\ & \text { yes } \end{aligned}$	$\begin{aligned} & \hline 61.4 \\ & 82.6 \end{aligned}$	$\begin{aligned} & 64.3 \\ & 70.1 \end{aligned}$	$\begin{aligned} & 47.8 \\ & 48.8 \end{aligned}$	$\begin{aligned} & \hline 63.3 \\ & 59.8 \end{aligned}$
Suggesting possible solutions based on the data collected	$\begin{aligned} & \text { no } \\ & \text { yes } \end{aligned}$	$\begin{aligned} & \hline 62.7 \\ & 79.1 \end{aligned}$	$\begin{aligned} & 63.3 \\ & 72.7 \end{aligned}$	$\begin{aligned} & 46.1 \\ & 53.2 \end{aligned}$	$\begin{aligned} & 62.2 \\ & 62.8 \end{aligned}$
Trying out various solutions and evaluating the resuits	$\begin{aligned} & \text { no } \\ & \text { yes } \end{aligned}$	$\begin{aligned} & 62.6 \\ & 78.0 \end{aligned}$	$\begin{array}{r} 64.0 \\ \therefore 70.5 \end{array}$	44.0 57.7	$\begin{aligned} & \hline 61.3 \\ & 64.9 \end{aligned}$
Working to Emplement the solution deciced on by the class	no yes	$\begin{aligned} & \hline 60.8 \\ & 75.5 \end{aligned}$	$\begin{aligned} & 65.8 \\ & 65.9 \end{aligned}$	$\begin{aligned} & 45.3 \\ & 51.7 \end{aligned}$	$\begin{aligned} & 65.2 \\ & 58 . \epsilon \end{aligned}$

*Colum totals are not meaningful here, since the, 10 processes given are not mutually exclusivs.

The cells in the table may be read "as Follows. Let us consider the process "carrying out the data collection procedures," and its possible association with instruction in language arts skills. We observe that, in sessions where "carrying out the "data collection procedures" did not take place, instruction in language arts skills occurred in 64.3\% of the cases. Thus it would appear that, if we are viewing this process as "treatment," and language arts instruction as "outcome," the probability of language axts instruction arising is "increased" in the presence of the process. Two issues arise at once:
(1) How much is the probability of instruction in each of the four skill categories increased or decreased in the presence of each of the ten problem-solving processes?
(2) What is the probability in each case that this apparent increase or decrease shows up in our sample as the result of chance alone?

The first question is addressed in the table below. There, the per cent of increase or decrease is shown, for each of the 40 possible combinations of skill categories and problem-solving processes.

Percent Increase/Decrease in Nufiber of Sessions Affording Exercise in Basic Skills and Concepts in the Presence of various Problem-Solving					
Processes ($n=1043$)					Mean \% Change
Prociess	Mathematics Ski11s	Language At﹎﹎ㄴ린	Science Concegts	Social Studies Concepts	
Discussion:					
Identifying and defining the problem	-11.6\%	+12.5\%	+0.1\%	+18.2\%	+ 4.88
Deciding on information and investigations needed.	- 4.7	$+22.1$	+ 6.4	+11.1	+8.7
Determining what needs to be done first	- 1.5	+10.6	+ 0.4	+ 1.9	+ 2.9
Deciding on the best way to obtain the information that is needed	+ 3.4	+ 7.0	- 1.4	+ 7.8	$\begin{array}{r} \\ +4.2 \\ \hline\end{array}$
Investigation: Carrying out the data collection procedures					
	+38.5	+ 9.0	- 5.4	-11.3	+ 7.7
Detecting flaws in the data gathering process or errors in the data itself	+28.9	+12.6	+ 2.1	-0.7	+10.7
Organizing, analyzing; and interpreting the data	+34.4	$+9.0$	+ 2.1	- 5.5	+10.0
		,			
Suggesting posisible solutions based on the data collected	+26.0	+14.8	+15.3	$+1.0$	+14.3
Trying out various solutions and evaluating the results	+24.6 \ldots	+10.2	+31.0	+ 6.0	+18.0
Implementation: Working to implement the solution decided on by the class	\cdots	,			
	+24.2	+ 0.2	+14.1	-10.1	+ 7.1

The general situation is now quite clear. All ten problem-solving processes seem, on the whole, to entail an increase in basic skills instruction. This may be seen from the fact that all.entries under "Mean of Change" in the table above are positive. More specifically, instruction in Mathemeries Skills is somewhat less likely in sessions where there is problema.:. a discussion, but very much more likely in sessions where investigation \therefore ? \overbrace{r}. mentätion processes take place. Language Arts instruction is facil$\therefore \quad \therefore \quad \therefore$ a moderate degree (about 100\%) by each of the ten processes. Instriuction in Science Concepts is similar, except that it is very much more likely in sessions where there is "trying out various solutions and evaluating the results," and a little less likely in sessions that involve "carrying out data collection procedures." Treatment of Social Studies Concepts is generally facilitated by discussion processes, and made less probable by investigation and implementation processes.

Some very rough sumnary figures may give the reader an overall sense of the magnitude of the effects shown. The mean change, for all 40 possible combinations, is an increase of 8.9%. That is, in the presence of any particular problem-solving process, the probability of exercise in each of the four basic skills categories is, on the average, greater by 8.9% than it would have been in the absєnce of that process. This might seem to be a small amount, but the reader should be aware that it applies separately to each problem-solving process, and to each category of basic skills. Indeed, for each session, the total effect of problem-solving processes on basic skills instruction might be quite large. 3.18 is the mean number of problemsolving processes employed in individual sessions, study-wide, suggesting something like a 318 mean increase (assuming independence, the factor is $1.089^{3.18}=1.31$) in the frequency of instruction in each of the föur basic skills categories. (The base level over which this improvement is presumed to take place is; of course, that engendered by the other features of USMES, such as construction activities, small group work, student autonomy, etc.): It would appear, then, that the magnitude of the relationship between problemsolving activity and basic skills instruction suggested by the present data is great.

However, if one wishes to examine the individual relationships tabulated above, it is important to assess the statistical significance of each increase,decrease. The tabulation which follows displays, in its cells, the significance levels of the relationships observed in all 40 cases. Positive and negative effects'are distinguished where significant of at least the . 05 level; direction of change is not shown (though small increases and decreases were actually observed) for non-significant results.

Significance of relationships between Basic Skills/
Concepts and Problem-Solving Processes :

Significance levels apply to individual cells, and not to the table as a whole. It should be understood that the general significance of the effect is not undermined by the fact that many individual combinations fail to achieve significance at the .05 level. Also, since there are, in all, 40 cells, significance of individual effects at the . 0 ' 5 level should sot be taken to have strong evidential value, since, where 40 tests have been carried out, one would expect results apparently significant at the .05 level to appear twice by chance alone.

One of the most striking features of the tabulation above is the strong effect (at the . 001 level in every case) which investigative processes seem to have on mathematics instruction. The following table displays this effect in mure detail.

Instruction in Mathematics Skills: Relationship to number of investigative problem solving processes carried out during a given session ($n=1043$)

It is also desirable to ascertain whether each of the ten problemsolving processes has, as is thought by those who have developed USMES, an integrating effect on the teaching of basic skills (that is, a tendency to provide simultaneous training in several skilis). A measure that indicates integration, as well as total basic skill instruction, is the total number of skills categories, of the four we are considering, involved in each session. The study-wide mean fer this statistic is 2.433 .

Mean Number of Skill Mean Number of Skill Categories treated Categories treated in Sessions without in Sessions with Rrecess \qquad 				
Discussion:				
Identifying and defining the problem	2.3948	$2.498 i$	1.9078	.17
Deciding on informationand investigations needed	2.3646	2.5639	6.8335	<. 01
Detemining what needs to be done first	2.4063	2.4764	0.8835	. 35
Deciding on the best way to obtain the information that is needed	2.3971	2.5042	1.9471	. 16
Investigation:				-
Carrying out the data collection procedures	2.3808^{+}	2.5739	5.6208	$<.05$
Detecting flaws in the data gathering process or errors in the data itself:	2.3783	2.6479	9.0060	$\leqslant .01$
Organizing, analyzing, and interpreting the data	2.3675	2.6121	8.9835	<. Ol
Suggesting possible so. .sions based on the data collected	2.3430	2.6773	16.9428	$<.001$
Trying out various solutions and evaluating the results	2.3184	2.7115	24.7413	$\leq: 001$
Implementation: Working to implement the solution decided on by the class	2.3704	2.5167	3.9843	$<.05$
*Based on a one-way analysis of variance with presence of activity as independent variable, mean number of skill categories as dependent variable.				

As the reader can see, all ten problem-solving processes appear to be positively related to basic skills instruction, since in all ten cases, the mean number of skill categories treated is greater in the presence than in the absent of the process. Furthermore, seven out of the 10 Fresesses are individually significant at the .05 (and in some cases the . O01) level. Thus, it would appear that the effect of each process on skills instruction in general is generally integrative and facilitative.

In an attempt to assess further the actual character of the effects involved, we have tabulated the ten processes cited above by three major process types: discussion, investigation, and implementation. Compiaations following this framework, like those following the ten-way framework used above, show generally positive effects.

Problem-Solving Processes Tupes and Exercise in Basic Skills

Problem Solvirs Process_Tupe.		percent of sessions exercising Mathematics skijis	percent of sessions exercising Language A든_skilis	percent of sessicns exercising Science concepts	Percent of sessions exercising Social Studies concepts
Discussion Processes	no	71.65	58.18	44.78	52.2\%
	yes	64.2	71.0	50.2	68.9
Investigative processes	no	50.7	59.5	39.8	60.2
	yes	77.7	70.0	53.4	53.7
Implementation Processes	no	60.8	- 65.8	45.3	55.2
	yes	75.5	65.9	51.7	58.6.

Significance of Relationships between Problem-Solving process Areas and Exercise in Basic Skiilis Areas ($n=1043$)

Process Tyoe	Mathematics Skills	Language Arts skilis	Science Concepts	Social Studies concepts
Any Discussion	-	+++		
Any Inves:igation	+++	+++	+++	
Pny Implementation	+++		+	-

Probability* that difference
is due to chance alone
(negative correlation)

Blank Cell	$p>$.05
-	$p<$.05
--	$p<$.01
	$p<.001$	

Probability* that difference is due to chance alone (positive correlation)

Blank Cell	P>	. 05
+	$p<$	
++	$p<$. 01
+++	$\mathrm{p}<$. 001

*By One-Way analyses of variance, $E(1,1041)$, with Use of Process as Independent Variable, Use of Skill as Dependent Variable.

These tabulations, analogous to the ones presented earlier, show the effects and significance: levels which emerge when particular basic skills and types of real problem-solving pro"esses are consicered together. For example, those sessions in which no investigative processes took piace afforacd instruction in mathematic skili 50.78 of the time. Those in which one or more processes took piace afforded instruction 77.7 of the time. This relationship is clearly a positive one, and (referrang to the second of the two tables) is significant at the . . O I level. It is interesting to observe that statistically significant negative effects do appear in two cells. This serves both as a caution mot all autivities which mar arise Eacilitate anl categories of skiils instruction), and an encouragement (clearly the positive results we do see are not chere merely because some teachers fill our questionnaires more optimistically thar others). In some instances, of course, teachers are simply unaware of the roles played by certain kinds of activities in particular fomal disciplines. For example, "identifying and defining the problem" may entail the cefinition of variabies, a mathematical operation which is not always recognized as such.

A tabulation showing overall basic skills activity, and employing this 3-way decomposition of pzoblem-soluing activities. Sollows.

As the reacer car out an fhree dinsses of probiem-sozving ačivizy appear

 sti:25
 ence in terms of ciasstoom activtey trather than, as above, in terms oE probiem-soiviry pacesses). Peshaps the simplest way to assess the effect os each ype of actuvivy is th set末om a T-sest, comparinc the mean number of basic skizis dategeries deait mith per session in whe presence, anc in the absence oE, eath activiz\% Zhe tabulations chat follow show the estects

(Pooled Variance Estimate)			
Mean_number of skills categories	$\begin{array}{r} T \\ V \underline{U} \underline{u} \end{array}$		$\begin{array}{r} 2-T A I \\ \text { Yobabil } \end{array}$
Sessions without construction activities 500 2.3080			σ
Sessions with construction activities 441 2.6281	-		

As the reader can see, each item shows a positive effect, and significance at the . OOl level. Clearly these three characteristic USMES classroom activities--group work, task differentiation, and construction--do entail conditions which facilitate basic skills instruction. (The reader is cautioned, by the way, that these statistics do not justify the inference that there are three independent cause-and-effect relationships at the significance levels shown. It is obvious that the activities cited are not; even in princiole, incependent; still, the presence of each activity either is or entails a condition which facilitates basic skills instruction.)

The afsect of class discussion appears to be positive as well, at the . 05 level.

The effect shown above is positive but not especially strong. Fortunately, somewhat more exact information on the types of discussion carried out is available, and can provide clearer information on the nature of the positive effect.

Overall Instruction in Basic Skills; Relationship to Discussion of Group Tasks

T-Test
(Pooled Variance Estimate)

Overall Instruction in Basic Skills; Relationship to Discussion on How Recent Work Relates to Solving the Challenge.

T-Test
(Pooled Variance Estimate)
Me:un number
cf skills
categories dealt T

Group	with per session	Value	DF	Probajility
Sessions with discussion of how recent work relates to solving the challenge 456	$\because 2.6996$	3.08	569	$<$
Sessions with discussion, but not of how recent work relates to soiving the chalienge	2.3391			. ${ }^{\text {a }}$

overall Instruction in Basic skills; relationship to
piscussion of future plans

Clearly, discussion. of group tasks and discussion of how recent work relates to solving the current challenge both entail conditions favorable to instruction in basic skills; however, discussion of future plans does not: what we observe in that case is merely a smail, non-significant, negative effect:

Thus, when one separately considers the usMes experience accoriding to each of its characteristic classroom activities, one finds that each aspect of those enumerated on the Class Session Report form has or entails a positive influence on basic skills instruction.
"Success" in USMES versus "Success" in Basic Skills Instruction

Though it would appear that the elements of USMES, in themselves, strongly facilitate instruction in basic skills, they are sometimes "orchestrated," in the USMES experience, to serve superficially quite different ends: Thus, it might be argued, the elements of the USNES experience, if used to promote success implicit in USMES, may not be optimally applied toward "success".in basic skills instruction. For example, class autonomy and student interest, both conceived as important desiderata in the uSMES experience, might conceivably be unimportant (or indeed, detrimental) in optimizing basic skills exposure.

It is with this concern in mind that six criteria for "success" listed on the Class Session Report form, of which only one is associated with basic skills exposure, are tabulated against each of the four basic skills and concepts.

Percent of Sessions Affording Exercise in Basic Skills and Concepts, broken down by Relative Success of Session in Terms of Cited USMES Criteria

The results are striking. In all of the 24 comparisons made, a positive relationship is observed. This in itself indicates a strong overall relationship between reports of "success" defined in USMES terms, and reports of "success" in terms of basic skills exposure. Mcreover; many of the individual items in the table above show statistical effects that are individually significant. The following tabulation gives a significance level for each of the 24 positive correlations in the table above.

Significance levels (by Chi-square test) for correlations relating criteria of successful USMES and exposure to Basic Skills

| | Mathematics Language | Science Social Studias |
| :--- | :--- | :--- | :--- | :--- |
| Criterion | | |

Students' interest in work	.2735	.9061	.0070	.0000
Progress on challenge	.0000	.1469	.0544	.1844
Depth of investigations	.0000	.7198	.4745	.5973

Time for
subject area
skills and concepts (.0000) (.0000) (.0000)

Development of interpersonal relations	.0197	.1752	.1157	.0000
Self-metivation				
and direction	.000	.4746	.000	000

Even excluding the fourth row, which redundantly deals with basic skills exposure and should be ignored, fully 40% of the items show individual significance at the . Ol level.

Conversely, the proportion of sessions rated as "successful" by at least five of the six criteria increases steadily along with the number of separate basic skills categories dealt with during the session.

Overall instruction in Basic skills; relationship to overall success of USMES session by six selected criteria			
$0 \quad \because$	44	11	25.0\%
1	182	85	- 46.7
2.	258	180 *	69.8
3	257	184	71.6
4	220	181	82.3

Thus, in general, it would appear that "success" by USMES criteria strongly entails "success" in basic skills exposure, and vice versa.

Optimal Conditions for Basic Skills Instruction Under USMES

For the user whose particular concern is instruction in basic skills, it may be thelpful to consider some of the parameters of uSMES teaching (session length, session frequency, class size, presence of aides, etc.) and their relationship to overall basic skills instruction. Only the most rudimentary comparisons have been made, but these should be enough to franish the user with general guidelines.

Let us consider these issues one by one. The following tabulation shows overall basic skills instruction and session.length.

No significant effect is disclosed.

The following tabulation explores the relationship between overall basic skills instruction during a session, and the total length of the USMES challenge to which the session belongs. As the reader can see, basic skills instruction took place more frequently in longer challenges. This does not merely mean that more basic skills instruction took place in the course of long challenges, but also that more instruction, per session, took place.

One item of concern to users is the effectiveness of basic skills instruction in USMES classes incorporating two or more grade levels. The following tabulation is directed to this issue.

The level of basic skills exposure does not sem to be reduced by the incorporation of more than one grade ievel in a single USMES class. In fact, an increase in overall basic skills exposure, significant to the. . OOl level, is observed.

51

Total class size is an issue of some concern to USMES teachers. The following tabulation shows the relationship of overall basic skills instruction to class size.

It is interesting that basic skilis instruction seems relatively more effective in smaller classes, and that this finding is significant at the .05 level. As we will see in the following section, suceess ratings by the six USMES criteria discussed above tend to favor larger rather than smaller classes--and this result, too, is significant at the . 05 level. Thus; in this one instance, optimal USMES and optimal basic skills instruction are favored by different conditions.

There is some concern among USMES teachers and developers about the percentage of a given class directly involved with USMES at any one time. This issue is addressed. in the following tabulation.

Orerall instruction in Basic Skills; relationship to proportion of total class involved in USMES

GEOUD.	Mean number of skills categories dealt with per session		$T-T$ Vari	ce Estimate) 2-TAIL Probability
Sessions with 89.5\& of class or more directiy involve¿* 349	2.4335			
			1028	. 933
Sessions with less than 89.5 § of class directly involvec.	2.454			
				-

*Mean percentage of class direc:ly involvec in USMES for all Sessions reported on is 89.5\%

As the reader can see, this variable has no sigmificant effect on overall basic skiils instruction, $2 t$ least by the particular partioning we have chosen.

Another issue of frequent concern has been the capability of individual teachers to conduct the complicated and diverse activities of an uSMES session without help. In an attempt to find out whether this has any effect on basic skills instriction, we have partitioned the sessinns according to the absence or presence f visitors/aides. The result is displayed in the following tabulation.

No signiミicant effect is observed.

Finaily, for the reader with a special interest in particular basic skills items, we tabulate exa=tiy what percentage of sessions in each unit provided exposure in each of the four basic skilis categories.

54

$$
55
$$

The reacer who wishes to use this tabie for purposes of unit. selection is cautioned to consider not only the percentage figures shown, but the number of session reports (given in parentheses in the leftmost colum) upon which our figures have been based. Where only a few sessions have been reported on, the reader should piace relatively little faith in the percentage figures generated. On the other hand, where many sissions have been reportea on. it is likely that. since many teachers and many different sets of --cumstances have been involved, the figures given are quite general and quite reliabie.

'

Summary

- Real problem-solving processes in USMES do seem to increase the amount of basic skills instruction reported. Specifically, for the io processes studied, the use of each accompanies an increase in the overall level of basic skills, instructions across four categories of skills (page 31, Mean \% Change).
- Wher all 10 processes studied are individually paired with each of four basic skills categories: Math Skills, Language Arts Skills, Science Concepts, and Social Studies Concepts of the combinations, 43% show individually significant positive effects at at least the .05 level and 8\% show negative effects (page 33, table).
- Instruction in Mathematics skills is especially strongly entailed in "Investigative" problem-solving processes. Each of the five processes studied shows a positive effect on Math skills instruction which is significant tc the .001 level (pages 33 and 34).
- An increase in integration of basic skills, instruction (measured by the mean number of different skills categories treated per session) is entailed by all 10 processes studied. In seven out of the ter, this increase is individually significant at at least the . 05 level.
- The following classroom activities used in USMES also entail. an inčease in basic skills integration and overall basic skilis instruction, significant at at least the . 05 level: Small group activities ($p<.001$), Diversity of tasks ($p<.001$), Construction Activities ($p<.001$), Class Discussion ($p<.05$).. ∞
- To determine whether.a "successful" session, as judged by USMES criteria. is also a "successful" session in terms of basic sk: ils instruction, each of six criteria for "USMES success" was viewne along with each of the four "basic skills" areas. In all of the 24 resulting cases, the relationship was positive. In half of these instances, the positive effect was individually significant at the . Ol level. (Page 43).
- The level of basic skills instruction in a particular session is positiveiy related to the following: number of sessions in challenge, number of grade levels in $c=u s s$ ($p .6 .001$ in both instances).
- The level of basic skills instruction in a particular session is negatively related to class size ($p<.05$).
- The level of basic skills instruction in a particular session is not significantly related (at the .05 level) to the following: session lengti, percentage of class involved in the challenge, presence of visitors/aides.

SUCCESSFUL USMES

USMES teachers and their principals may wish to know under just what circumstances (class size, length of session, etc.) an USMES experience which is by some standard "optimal" can take place. While such "optimal" values (e.g., 47.3 minutes, 21.6 students, etc.) could in principle be ascertained, a very large data sample would be required, since perimeters for different grade levels and different units would probably differ greatiy. Certainly, deriving "optimal" values of this sort is far beyond the scope of presently available data, which is based on the conduct of only 72 challenges.

However, the scope of the present sample does permit us to derive certain basic recommendations, (generally expressed in terms of. "long" versus "short"'sessions, or "large" versus "small". classes). The readèr is" gautioned that here, as in the previous section n our tests of statistical significance are not to be taken as seeking evidence that particular variables are actually causes of the effects discussed. Rather, they are to be understood as pointing to circumstances which either cause, or on the whole accompany circumstances which cause, the
effects cited. This, of course, is consistent with the needs of a teacher or principal who wishes to improve, rather than anlyze, iocal USMES teaching.

The Number of Sessions in a Chzilenge
The mean number of sessions per challenge in this study is 16 . In the following tabulation our sample is divided into two parts, sessions from longer than average challenges, and sessions from shorter than average challenges; and the two parts are examined for the "overall success" rating of the sessions they encompass. (Criteria for success here are the same six criteria employed in the previous section, Section 5 above):

- Student interest
- Progress on the challenge
- Depth or superficiality of investigation
- Use of subject area skills and concepts
- Experience in developing interpersonal relations
- Relative automony and self-motivation of the class.

Mean number of criteria according to which session was favorably assessed (Maximum Groue \qquad 으sible=6)	T-Test (Pooled Variance Estimate) T \quad Value 2-TAIL Probability
```Sessions in long challenges (challenge length=16 sessions or more) 537 5.1844```	$89 \quad 1013.57$
```Sessions in short challenges (challenge length=15 seconds Or. less) 506 4.9209```	-

The reader can see fromethe tabulation and test of significance that sessions of greater than average length tend to be "more successful" (by the particular criteria used) than shorter challenges. The reader should be cautioned, however, that this effect cannot be generalized to some principle such as "the longer the better." Indeed, when a coarse partitioning is used, and the whole range of session. length is considered, no evidence is found to suprort such a generalization.

USMES Session Length

For the entire sample, the mean length of USMES sessions was found to be 61 minutes. If the sample is partitioned by this value, the results are as follows.

As the reader can see, sessions more than an hour in length appear to be more "successful" than shorter sessions; this result is significant at the . 001 level. A generalizing principle, "the longer the better," would seem to be roughly borne out, as the following cross-tabulation shows:

	Crosstabulation of overall success of USMES session and length of session ($n=914$ sessions) Session Length				
```Sessions rated successful according to 4 or fewer criteria (max = 6)```	$\begin{gathered} 52 \\ 17.82 \\ 44.1 \end{gathered}$	$\begin{gathered} 201 \\ 65.78 \\ 33.88 \end{gathered}$	$\begin{gathered} 40 \\ 13.18 \\ 33.68 \end{gathered}$	$\begin{gathered} 13 \\ 4.28 \\ 15.98 \end{gathered}$	$\begin{gathered} 306 \\ 33.58 \end{gathered}$
Sessions rated successful according to 5 or more criteria $(\max =6)$	$\begin{gathered} 66 \\ 10.98 \\ 55.98 \end{gathered}$	$\begin{gathered} 394 \\ 64.88 \\ 66.28 \end{gathered}$	79 $13.0 \%$ 66.48	69 11.38 84.18	608 $66.5 \%$
Column Total   Chi Squa Signifi	$\begin{gathered} 118 \\ 12.9 \% \\ =17 . \\ \text { ace }=0 \end{gathered}$	$\begin{gathered} 595 \\ 65.18 \\ 5, \mathrm{witl} \\ 6 \end{gathered}$	$\begin{gathered} 119 \\ 13.0 \% \\ \text { egree } \end{gathered}$	$\begin{gathered} 82 \\ 9.08 \end{gathered}$   Freedo	$\begin{gathered} 914 \\ 100.08 \end{gathered}$

Above, the proportion of sessions rated as successful by at least five out of s.ir criteria rises from a minimum of $55.9 \%$, in sessions 30 minutes in length or siorter, to a maximum of $84.1 \%$ in sessions 91 inrougn 120 minutes. long.

The reader is cautioned, however, that when individual criteria are considered. the results are far from "smooth."

Percent of sessions given a positive evaluation in terms of criterion:

\begin{tabular}{|c|c|c|c|c|c|c|}

\hline Criterion \& Number of sessions evaluated \& 1-30 minute sessions \& | $3 i-60$ |
| :--- |
| mi`nte sessions | \& 61-90 minute sessions \& 90-120 minute sessio \& Overalı <br>

\hline The students seamed to be quite interested in their work \& $$
966
$$ \& 95.2\% \& 97.3\% \& 99.2\% \& 99.0\% \& 97.4\% <br>

\hline Overall, they madegood progress on the challenge \& 923 \& $$
80.0^{\circ}
$$ \& 91.5 \& 96.6 \& 94.9 \& 91.1 <br>

\hline Their investigations have been fairly comprehensive, so far \& $$
877
$$ \& 63.6 \& 81.7 \& 82.9 \& 95.8 \& 81.2 <br>

\hline This session included time in which students used subject area skills and concepts \& 843 \& 78.4 \& 85.4 \& 78.4 \& 89.3 \& 84.0 <br>
\hline Many students had experiences that should help develop their interpersonal relations \& 862 \& 87.0 \& 96.1 \& 94.0 \& 97.5 \& 94.9 <br>

\hline I did not have to strong direction for this session's work \& $$
922
$$ \& 62.9 \& 71.4 \& 59.6 \& 86.7 \& 70.5 <br>

\hline
\end{tabular}

Thus, an attempt to discriminate too finely among sessic. lengths, searching for an optimal effect, is probably unjustified.

Small Group Work
As the following tabulation shows, sessions in which students worked in small groups tended to be more successful than sessions where this was not the case.


Of course, this does not mean that all sessions should include work in small groups; naturally, challenges require some sessions which do not entail small group work.

Student work on different tasks
In general, sessions in which students work on different tasks seem to have been most successful.


## Class Discussion

In general, sessions which incorporated class discussion do not appear to have been significantly different in overall "suecess" from those which did not.


However, when the nature of the discussions was submitted to a finer breakdown, the following results appeared.



Groups		Mean number of criteria according to which session was favorabiy assessed ( Nax 1 mum possible=6)	T-Test   (Pooled Variance Estimate)		
Sessions in which students held class discussion, but not discussion of future plans	77	5.3506			
			1.50	595	. 14
Sessions in which students held discussions of futire plans	520	5.0786			

As the reader can see, sessions in which students discussed group tasks and sessions which students discussed how their work related to solving the challenge both were relativ:: "successful," whereas, sessions in which students held discussion of ure plans appear to have been marginally less successful than those in wh:. students held other sorts of discussions.

```
Construction activities
Sessions in which construction activities took place appear to have been more "successful" than others.
```



Gracie Eover
T. - followang is a tabulation oi "success" by grade jevel.


Though Eigures difter consicezabiy from grace to grace, no generaiization would seem to emerge. Grades 1 and $S$ seem to shim lowez zates of success, but the miber of sessicns roorted on are in both cases far fower than for ail other grade leveis so these figures cimnot be zeiiec on. In any cutnt, theze sums to be no systematic effect gf gade upor "success" in uspes

xaysyay




It is interesting tiat this result, signifiant at the .05 level, is different from the result found when basic skills instraction is considerec. Ey that criterion, smallex classes are found to be somewhat betzer.

Propoztion of ciass directiy invoived in uSuEs activity
Stucy-wide, tie mean proportion of any class directiy engaged in USMES activity was . 895. hinen the sampla was partitioned into sessions where more than this proportion, and fewer than this proportion, were involved, the EiEference in overal! "success" was not founc to be significant.

```
|
Freserce ct ainesirusitor:
 The greserce of aices/visizors seem to nave littie or no effect on the
overal: "swowess" of uSves sessions.
```



This is of some interest to the new uSMES teacher, since one anxiety felt by many is that they will, unaided, be unable to supervise a full range of USMES açrivisies in the classroom. . The tentative finding of this study, that aides are not necessary, is bơrne out also by the foliowing.

71 .

Count   POW \%   Col \%	Crosstabulation of sessions including construction activities and Sessions where one or more visitors/ aides were present in = 94:)		
Sessions with no sonstruction activity	$\begin{aligned} & 403 \\ & 80.6 \% \\ & 52.0 \end{aligned}$	$\begin{gathered} 97 \\ 19.48 \\ 58.4 \end{gathered}$	$\begin{gathered} 500 \\ 53.1 \% \end{gathered}$
Sessions with some construction activity	372 84.48 48.0	66 $15.6 \%$ 41.6	$\begin{gathered} 441 \\ 46.9 \% \end{gathered}$
Column Toṫal	$\begin{gathered} 775 \\ 82.4 \% \\ \text { Chi-Squar } \\ \text { significa } \end{gathered}$	$\begin{aligned} & 116 \\ & 17.6 \% \\ & 2155, \text { with } 1 \\ & 1551 \end{aligned}$	$\begin{gathered} \frac{941}{100.0 \%} \end{gathered}$   ree of freedom;

From this tabulation, it vould appear that even the use of construction activjties, a very beneficial but potentially "tricky" matter for new USMES teachers, does not require visitors or aides.

## 72

Range of grades in USMES sessions

The number of grade levels present in a given USMES session seems to have no significant effect on the overall success of the session.

Summary
Available data from $=$. - Lass Session Reports suggests the following:

- Chalienges of 16 sessions or longer are more successful tinan shorter challenges.
- Sessions at least an iour long are more successful than shorter sessions, and the general principle "the longer the ieetter" is roughly true.
- Sessions with small group activities are more successful than those without.
- Sessions where students work on different tasks are more successful than those where this does not take place.
- Certain types of cla:s ciswission are positively related to session success.
- Sessions with construction activities are more successful than those without.
- No general-rule can be adduced which relates session success to grade levei.
- The range of grade levels in a particular USMES class does not seem to affect success.
- Classes with at least 25 students seem somewhat more successful than those with fewer.
- The proportion of students engaged in any one session challenge seems to have littie effect on success.
- The presence of visitors/aides does not seem to affect success.

Part 2 Interviews

ERIC

## CASE STUDY OF FIVE USMES SCHOOLS: INTRODUCTION

In Spring 1977, USMES teachers, non-UȘMES teachers, and principals at five USMES schocls were interviewed. Although a number of issues proved to be of recurring major importance and:a checklist of questions was used (see Appendix), no fixed format was used in conducting the interviews. A single interviewer, the USMES project director, conducted all discussions.

The five schools have been designated "A" through "E." Schools "A" . through "D" are the same as the schools so designated in the USMES student study. School " $E$ " is an addition, and serves to increase the tocal range of material available for our examination and interpretation. The schools to be studied were selected not because they were all successful (some have serious problems) but because on the whole they display an interesting and, we hope, representative range of political and pedagogical developments to USMES, both positive and negative.

Section 8, below, is expository. It sets out a brief description of each of the five schools, commencing with a description of the school itself, and croceeding to characterize its uSMES activity in each case.

Section 9, which follows, is interpretive. It consists of a discussion of major issues which, we believe, underlie the circumstances detailed in Section 8. The emphasis throughout Section 9 is on generating explanatory hypotheses and, at aimes, direct recommendations which may be useful to teachers and administrators in the field.

Section 10 is speculative. It consists of several discussions which "go beyond" the data, proposing mechanisms and hypotheses which attempt to explain the investigative findings reported in Section 8. The material in Section 10 is tentative and exploratory, but will, we hope, be thoughtprovoking and practically useful.

Sections following are:
Section 8, "The five schools," page 73.
Section 9, "Interpretive issues," page 84.
Section 10, "Speculative Issues," page 100.

# CASESTUDIES 

## THE FIVE SCHOOLS

## School "A"

School "A," located in the mid-central part of the United Staies, has an enrollment of about 300 elementary-level wtudents. The school is located in a small city (population about 50,000), and the racial/ethnic composition of its students is about 998 white, lz Asian and Black. The neighborhood contains a university; most nearby residential structures are "expensive" houses. School "A" is located in an affluent district which may be expected to have strong interests in securing academic advancement for its students.

Recently, USMES challenges have been carried out in mass communications, playground safety and improvement, advertising, designing for human proportions, manufacturing, using free time, and other areas.

The school does not place much emphasis on providing Design Lab facilities. A portable cart is available, but rpinion is divided as to how useful it is. The use of teachers' aides in connection with USNES is not a significant feature of the school's USMES policies. One second-grade teacher commented on the difficulties of conducting IJSMES activities with only part of a class, since this entailed planning something to do with the rest of the students during USMES time.

Generally, science and social studies time is used for USMES activity. Sessions are 45-50 minutes long, and scheduled about four times a week. There is some feeling that these periods are "a little short," and that students may be frustrated by the need to stop USMES activity after only a few minutes. Other scheduling needs are the cause of this limitation.

No specific procedures exist for teachers to report USMES activity to principal or district, but general reporting procedures within the district have.recently become quite stringent, and are expected to become more stringent still. One teacher reports being "swamped" by accountability procedures.

District interest in basic skills instruction and recent district directives are seen as contributing to a climate with is rather unicongenial to the practice of USMES. This is in some respects an anomalous situation, since the overt philosophical position of the district seems to favor real problem-solving--a real problem-solving correlates yery well with stated district objectives, and USMES is even specifically mentioned in the district science objectives. In fact, there is a deeply felt division, both among administrators and among parents, on the subject of innovative instruction; but in general it is the earlier climate which was favorable to USMES and is reflected in the district science objectives, and the later climate which places an emphasis on basic skills instruction in a traditional mode. Fortunately for the USMES program at School $A$, however, the principal newly installed to "bring order" to the school seems quite sympathatic to usmes.

Within School A, apparently, the use of USMES is not divisive. The school custodian is not ofrended by the students' construction activities, and relations between USMES and non-USMES teachers are described as "gooa." In fact $\mathrm{z}_{\text {. }}$ several "non-USMES teachers" are said to have used USMES inits.

Relations with parents are strained and in some ways unsatisfactory. In the immediate past, parents have been critical of School A because of a lack of "specific" science instruction, and because they wish to see evidence of skills advancement (such as homework) and do not regard real problemsolving as a matter of high priority. The negative attitude of at least some parents was shown by parental criticism of an "amateurish" play given and entirely produced by students in connection with an USMES project. The fact that, apparently, some parents did not realize the play had been produced entirely by students is a symptom of the poor communication problem may account for some of the parental skepticism observed.

Many parents seem to be unfamiliar with the goals of USMES (some parents try to solve problems for their children!), but when consulted by and surveyed by one teacher, on:ly ten percent of the parents responding thought uSMES a "waste of time."

Clearly, however, more than commication problems are involved. There are in the district two mutually antagonistic parent groups which meet separately and espouse different policies. Further, although some parents are charmed by their children's enthusiasm for real problem solving, others are not, and wish to be assured in advance what basic skills instruction will i: provided by a given USMES unit.

The effect of USMES on School A students is described in quite posi-ive terms. It was reported thar "kids' inquiry skills are more defined," and that they "zero in on a topic" faster. It was observed that "socialization goes on betwern kiad" $i n$ the course of an USMES challenge, that "slower kids come forward" and that students with learning problems can, in the course of challenges, become "real leaders." Apparently, stañardized test scores have not been affected, positively or negatively, where USMES has been employed instead of some other curriculum materi 1 .

It is interesting that in the view of School A teachers, slower students benefit most from USMES, whereas the principal suspects that USMES is "particularly suited for gifted students." This difference may be accounted for by the fact that the principal is a new arrival from a different school, where different conditions prevail. However, it is of some interest that, throughout this study, different but quite strongly-held views on what sort of students USMES was best for (faster-slower, older-younger, affluentdeprived) were consistently expressed at different locations. We will speculate below on the interesting issue of whether this links optimal USMES effects with some particular developmental stage (whether reached by gifts or educational opportunity), or whether children in different schools heve different perceptions of the autonomy seemingly offered by real problemsolving challenges.

Little was said about USMES as a tool for integrating basic skills instruction. Ore teacher characterized USMES as "a tool for the reinforcement and utilization of basic skills, but not an initiator of basic skills."

Apparently, quite good-quality USMES is being done at School A. Since the new principal is fundamentally sympathetic with USMES, and, at the same time, the schooi is under intense pressure from groups of parents with conflicting views, it struck our investigator that valuable new modes of USMES might emerge. In his words, "USMES mav develop very nicely and even give us some new models that many other schocls zould use." on the other hand, "it is possible that some of the pressures in the school will leac to distortions in the USMES model." Our investigator notes that "ESS is the science program for the iritermediate grades, but it is used in a completely individualized way without groups of children working together. This individualization, I believe, is fostered because it is easier to follow the children's learning, and also to control their behavior."

In summary, School A is characterized by its talented $r$, privileged students, and its need to function under conflicting pressures from mutually antagonistic parent groups. In this situation, a mode of USMES well-adapted to this environment may evolve, or USMES may be distoried to the point of reduced usefulness.

## School "B"

School "B" is located in the southwest of the United Siates, in the vicinity of a large city (population 1.5 million). Enrollment is 800 . The neighborhood of the school includes a shopping center and "inexpensive houses." The racial/ethnic composition of School B students is approximately 49\% Spanish surname; 49\% white; and $2 \%$ black, asian, and native americar combined.

The level of USMES activity at•School $B$ is very high, and significantiy effects the tone of the school. Challenges are generally involved with the smooth and successful operation of the school. They are concerned with such issues as purchasing supplies, regulating traffic, promoting fire safety, improving playgrounds, and many others.

No special Design Lab ssace is set aside, though tools ave widely used. Tools are used in classrooms (indeed, the principal suggests that besign Iab space may not be needed since the "whole buil.ing" is useá). Teachers are instructed in tool use, and tools are provided througin student-raised funds as well as district funds. Some teachers feel that a Design Lab space would be extremely helpful.

Time employed for USAES is derived from science, mathemetics, and language arts. Of the persons interviewed, most thought there was enough time proviced, though one thought there was too iittle, "because the class has special classes $1 \frac{1}{2}$ hours each day."

USMES is evaluated along with other subjects in regular district svaluations, and the district seems to be satisfied with School 3's use of USMES, though not overtly supportive of it.

The principal of School B supports USMES with great vigor; we beliave this is the largest single factor which accounts for the unusual strength of USMES in School B. This principal's discretionary power over curriculum is not boundless, but within its limits she has given USMES a significant pedagogical role in the school.

The social role of USMES in Schooi 3 is probably even more important than its pedagogical role: it is felt that USMES "controis the atmosphere of the school," "gives students a sense of ownership," and "makes children authority figures." This is particularly important for School B, because of its culturally mixed student population, and high student turnover rate.

Apparently relations between USMES teachers and non-USMES teachers are good. Relations with the school custodian have remained friendly--evicently the custodian is "amused" by stucient construction activities.

The parents of school $B$ stucerts are not much i.avolved in USMES, thougis they seem to approve of the program (and in some instances have requested their children be.placed in USMES classes:. Grade reports to parents characteristically take USMES into account within a particular major subject, such as science or language arts. In some cases, the discipline and
$\square$
cooperation of students is reflected in student citizenship reports. Evidently local pressure on teachers, principal, and district administrators to justify all work in terms of basic skills instraction is moderate. One respondent did express a desire to see USMES "correlated within suibjects" but this respondent was a non-USMES teacher who might have been unaware of the extent of presently existing correlation resources.

The respondents interviewed, for the most part, seemed to agree that the effects of USMES on School B students were very positive. Students are characterized as "being more eager to learn," and "having a sense of ownership" in the school. Non-Usmes teachers were divided-one reported that "kids benefit" finom USMES, but another observed that "scores mist go up-will making posters help?" Standardized test scores have not been systematically investigated but two respondents expressed the belief that kids did better on standardized.tests because of exposure to USMES.

Ar attempt at doubling the number of USMES teachers in School $B$ in 1976-77 ha, not been wholly successful since new USMES teachers were also newly-trained classroom teachers, and in many cases found uSMES "overwhelming." However, informal peer support for new USMES teachers did prove heipful, and the principal took an active interest in new teachers. Some respondents expressed the wish that formal workshop training (such as that previously afforded in $S t$. Louis) could be given to new teachers. Teachers at School $B$ who use USMES with their students typically refer to it as a "way of life," or a "philosophy." Characteristically, non-UTMES teachers perceive the program as requiring mucin iess training than usMes teachers do.

The sciool 3 USMES implementation is strong and vital, and a large number of teachers at School $B$ are now skilled enough to teach USMES on their own. However, the program "is not being dealt with in a positive way by the school distzict at all." Thus, the implementation is still quite directly dependent on the energetic support and personal commitment of the School B principal; otherwise, its Euture is not assured, though its present state is very strong.

## School "C"

School "C" is located in the north central jart of the United States. The schooi is locatec in a suburb (population about 25.000 ) and is set in a neighborhood of "moderate" to "expensive": houses and apartments. Student enrollment is about 700 , consisting of $99 \%$ wite, is biack and spanish surname combined.

Châllenges done recently have been Schoo Zoo, Design tab Design, rowing plants, Classroom Management, Plannins a camping irip, and others.
 located in an unused shower room, and is characterized as "too far and too isolated from classrocms" (that is, it is not possibie to slupervise both students using the design lab anc students remaining in the classzoom, because the two are spacially too far apart). This pruoien was ment rec by several unNES teachers, and is guite serious, since aides are not -utinely provided to help. supervise sepazate groups of students.

- Tine for usMES activities is generally p:ovided through the use of science time, $E=$ time, vome social studies time, and homeroom. fypicioly, twenty to thirty mitutes a day say be made available, three times a week. It is apparently the principal's viek that finding erough fime for usmes is "a big Gegative] factor." fhe time azeually provided is smain compared with that in other schools.

The importance of "-smes at School "C" has decreased significanciy. There is now no discussion of usves at the district level and there is a new strong emphasis in the aistrict on traditional training in basic skills. "heep nitting basic skilis in math," is the message of current district administrators. Also, new controis anc accountahility mechanisms heve been set up as a reaction against earliey fainure in the district to follow up numeros in-
 with the explicit, Eormal peajgogical gouls of the aistrict. I. is now diEficult to sciedule anc difeto: = to arry oun, both because of district amphasis on "basies" and $Z=\mathrm{ze}$ logging procecures. Et is significant that funds for the gurchase $=\because$ usxes materials are available, but materiais have not been bought.
srading in usMes is not, appaventiy, easy, anc is littie done, though sope grading in science, health, and language arts incorporates stuaent performance in USMES. In gencral, there is iittie interaction between USMES and the rest of the curriculum, ara oniy non-icmes teachers made comments such as "uSMEs fits in," and " [the usiss approach] is used =o teach many subject areas."

Relations between those usiny USMES and others are not particuiaviy harmonious. Some teachers felt hat relations \%ere satistavtozy, but ozhers felt they were deteriorating. The schooi gustodian was reported as having been "upset by paint and animalr"
-There is some positive interest among parents (for exmple parents were willing to staft the Design Lab) but most interest would appear to be negative. Thus, a pirent thought his cinle was in "too many" usmes units, and problems of grading, and reporting JSMES activities to paren=a seemed to deter teachers from the use of usves.

OSMES is nct generaliy recognized as having had auch effect on School "C" or its students. The principal Einds the program as had "no effect" on the school itself, and our investigator feeis that scme students are actually "bored" by uSpes as it is taught at the schol. There is no indication that comparisons of stancazdized test graces have been mace in an attempt to assess possible effects of USMES. On the other hanc, some teachers have reported usMEs units that went "very we:l" with their classes, and, in the view of our investigator, some school "C" teachers are teaching very good uSmes.

It would appear that the rature of the studert population at school "C" is changing. a iarge numez of "transient" students ac" pass through the school, and it would appear the school $C$ teachers have difficulties in dealing with them. A number of coments were mace obout students who were "less mature," who "could not discipine themselves," or who had to be kept-separated in their seats. No doubt this change is a deterrent to uSMES rotivizy though at least one teacher reports excellent results with a "very mirec class."

Most USMES Eachers a= Schoul "C" were trainec in an USMES cevelopment. zeacher workshop. Theze is not an active trainimg progran at School "C" 50\%.

In generai, teachers' riews on the scoze and function of reai probiensoiving are guite cautious. Thus, one seacher feels that probiem-solving consists in Einding anshers to problems posed by the teather through library work in small groues. Another sees group leadershis in usmes not as an experience which may bring the retzring student out of hinseif, but as a role which must be assignea so pre-xxisting student leaders if chailenges are $=0$ be successful. It anothet =ase, the "USMES spirit" is seen as ilttie more than a style oE zresenzirg incivicuai work (scen as ass). Cieariy, real problem-soiving at schooi "c" inciuces delicate group dyramies, since one successful uswes teacter cbservec that "Kids zesent being asixed to plar eaviy on:" It seems especialiy significant that stucents feei they are being "asked" rather than "allowec" to gian.

It nound appear thit östes is "in troubie a School C. The reasons would appear to be these: Eirst, it seems that teaching stafi anc student population at Schosi "C" are not comfortable with each other: Second, it would appear that many teachers mistake parts of USNES for USMES itself--that is. they feel that uswes is an "approach" winin can be usec in indindual work, or in solving veacher-assigned problems, or in ue using grouns, or withou: using toois.

## $50 \infty=0$




 scinoss combsucc.

Recent ususe





































```
problem solung--sor example, a ski= was Eyescntec to the local PTA--but
the effort is not a strong one, and there seems te be little contention
c antugonism amons the school "D" parents.
```

Alcnough one non-isMES teacher was wnez the impression that USMES had no effect or stucents, all ctier respondents scemed to agree that USMESrained childzen ce- mik better in. groups. One respondent ciaims to be able to teil wit ren had been trained in USMES by their actions. No evicience had : $A$ that USMES affected standardized test seores, e,ther savorabiy craily, by comparison with other science curricu1un.
inthougt zesponderts at School "D" suggested USMES for use with both siover-than-average, and brighter-than-average, students, the bulk of opinion woule sees to favor use with the brighteriolder studerts at School "D".
vany of the techers $2=$ Schoo' "D" regarc uSMES as corz materiai--many, however. regare usues as a sugplement. In genezal, it would appear/that many teachers need to know more azout USNES. Learning would seem to be a littl? haphazaze for new USNES seachers, and many USMES teachers spoke of misconcep:izns Einey huld when they began using the program. Many, however, intend so continue using the program now that they have come to understand it, and aze 0 Sthe opinion that "only ususs has real p=oblem-solving."

I:. general, Sciooz D appears to be a good environment for the USMES program. One ミn土erestirg Euture devevoment planned by School D's principal is to have "et ieas =intee teachers coing USMES at every grade level," and some wifying =ecord-keeping zrocedure to facilitate students getting a full but balanced exposure to USMES over several years. Thus, some mechanism would insure that a sucuent was not exposed to the same challenge twice, etc. This principel aiso believes rinat "siower chilizen sincuid do uSMES," and that they can benesit srom :

School "E" is located in the mid-central portion of the United States. It is in a small city of about 50,000. The school itself is set in an urban/suburban neighborhood, of middle to low-middle class socioeconomic status. The student population is about $80 \%$ white, $20 \%$ minorities. Total enrollment is 550 .

Teachers in School E frequently do several units at once. Among the units have been School Zoo, Growing Plants, Soft Drinks, Advertising, and others. A Design Lab space is available at School $E$ and is important to the USMES done there. Materials at the lab are kept up by the principal, ind the facility is described as "well supplied." One improvement sought by several respondents was a full-time Design Lab manager.

Aides, and the routine usc of aides for USMES teachers, are central to the style of USMES teaching carried out $a=$ School "E". All teachers agreed on the 1 mportance of having aides, particularly for USMES, and even the wished-for Design Lab manager is conceived as an aide.

Time employed for USMES is science time, math time, and social studies "research time." Typical scheduling for USMES employs periods of rather intensive work--a "mini-course structure," with over 5 hours of UGMES per week for several weeks, is apparently quite cormon. Respondents are divided as to whether enough total time is available.

USMES "ais an important role in the school (almost all teachers at the school do iSMES) and is explicitly approved by the Eoa of Education (the principal persuaded the board of the importance of USMES). Parents are familiar rith USMES chrough zeports made to them by the school, through conferences in which some teachers report of individual strengtis and weaknesses of each student, and through "scrcunging" effores by students to secure materials for construction. Parents are described as all having responded "positively to USMES," and have volunteered to help.

Relations between USMES teachers and others appear to be harmonious.
Teachers are generally positive about the program ("will always use USMES") and believe that the USMES techniques may apply to any subject if an aide is available. Teachers are eager to see new materia:s a i be up-todate, and in general are strongly convinced that the custodian's cooperation and flexible support on the part of the principal are critical for successful USMES. At least in the past, some training has been carried out in districtheld workshops, and on a one-to-one basis.

In general, it would - sar that School E presents a modei of stable USMES mplementation with strong mutual support among teachers, principal, parents, and the school board. The importance of aides, and the general flexibility of USMES use at Schooi "E", are notable factors.

Summar:
In Schools $B, D$, and $E, ~ U S M E S$ is used with considerable success, and ISMES has a significant impact on the life of each school. In each case, the local USMES implementation is tailored to meet local needs and resources, but all would, in the words of our on-site investigator, "make excellent demonstration schools for USMES."

At. School $A$, USMES is being hindered by a generally high level of conflict and mutual suspicion among teachers, administrators, and parents. However, good USMES is being taught, and students at School A are particularly receptive to.taking initiative. Thus, the new principal of the school may be able to evolve a model of USMES capable of responding productively, to these pressures without undergoing excessive distortjon.

In School C, USMES is in decline, probably because of worsening district climate and chánging student population, which seem to have put pressure on students, teachers, and principal alike that discourage the use of USMES and create an atmosphere of anxiety. However, the USMES that is being taught. is generally good uSMES.

## INTERPRETATIVE ISSUES



The use of USMES traditionally entails the use of tools and construction facilities. The developers of USMES, by evolving the concept of a Design Lab, have sought to formulate a standard strategy for efficiently providing such facilities as add to the breadth of, many USMES challenges. In this study; two empirical questions relating to Design Labs inevitably invite our attention. Eirst, to what extent does the success of most school USMES programs depend on the accessibility and adequacy of such facilities? Second, what sorts of Design Labs are most successful?

Let us consider what sorts of facilities are available at Schools "A. through $E$, and how well they meet local needs. At School A portable cart was used. . Although th ee was some difference of opinion, respondents generally felt that this fa lity was not adequate. The lack of a Design Lab space was cited as a handicap, and it was noted that teachers might "shy away from some units" because no satisfactory facilities were available.

In School B, neither a portable cart nor a separate Design Lab space was proviced. Tools were used a great deal, how $\in$ ger, and the principal commented that a Design Iab space was not needed because "the whole building was used" for construction activities, and because students earned money to purchase necessary supplies. It is clear that School B takes a serious interest in facilitating construction activities (teachers are regularly instructed in proper tool use) and it appears that a great deal of successful construction takes place there; however, more than one respondent voiced the wish that a separate Design Lab space be made available.

One suspects that USMES has such vitality at School B it will succeed no patter what facilities are available. The success of construction activities at School $B$ does not mean that the school's solution to the Design Lab prob-lem--no Design lab at all--would be a generally satisfactory one. It should also be noted that construction activizy at School $B$ is not altogether financially unsupported: a $\$ 1,500$ award from the district's Special Innovation Fund was employed to buy tools.

Schools C, 2 , and E, have separate Design Lab spaces. The lab at School $C$ is perhaps the least satisfactory, since it is lo:ated in an unused shower room which most respondents fourd "too far" and "too isolated" for effective use. complaints about the remoteness and isolation of this space shovld net de iaken merely as complaints about inconvenience. it a school such as Schoo? C where teachers aides are not habitually used tc assist in USMES challenges, teachers wishing to use Design Lab spaces for construction must divide large classes, and supervise simultaneously students in the classroom and students in Design Lab spaces. Merely "keeping order" under such circumstances is difficult if. the spaces are far apart; adequate guidance and supervision becomes nearly impossible. The seriousness of this issue is borne out by the fact that one third grade teacher at school $C$ had her stuJents biy rather than construct cages for the School zoo challenge.. It is ateresting that the situation at School $C$ is one in which teachers' aides would be of great use in mounting a successful USNES program, since the inaccessibility of Design Lab spaces would then pose fewer problems. However, there is little tendency at Schnol $C$ to think in temms of aides.

School D and school E have separate, heavily-used Design Lab spaces, both of which seem to be functioning -uite successfully. The lab at School $D$ is well-funded by school and distr : (funding provides for acquisition of, materials and salary for a Desis $i a b$ manager), and is being used to capacity. Most respondents $d \epsilon$ scribe the space as "just adequate" or "rather small for a whole class,". and some respondents noted that Design lab use could be "better scheduled." It would appear that it is the Design Lab manager, rather than the Design Lab tools or space, that is centrally important. There is a history of cooperation between Design lab managers and individual teachers (for example, the manager comes into the classroom to help with tool-using skills) and the present interest of School D's principal is to secure not a better space but a full-time Design Lab manager who is an elementary school teacher with full liaison to classroom teachers. Thus, in sone measure, the adequacy of funding for tools and the presence of an active professional Design Lab manager compensate for the marginal quality of Design Lab spaces available. A portable Design Lab cart, well-outfitted and provided by the principal to supplement existing facilities, has been unsuccessful. Everyone seems to agree that this cart has been little used, and the principal finds it a "disappointment."

At School $E$, there is much less funding for the Design Lab, but apparently the space is adequate: Design Lab use, like all other aspects of USMES at जhool E, is greatly facilitated by the flexible and extensive employment . of teachers' aides. Indred, it is a full time. Design Lab aide that respondents from School E would like to see. The Design Lab at School E is perceived as a highly necessary facility, and the principal is concerned to maintain Design c Lab material supplies. Fortunately, most materials (apart from Tri-Wall) are donated. to the school.
. Naturally, the information we have gathered on Schools A through E cannot serve as a basis for reliable general conclusions. However, the facts appear as follows:

- Portable Design Labs (carts) do not seem to invite much use. The reader will recall that both Schools A and D have outfitted Design Lab caits, and that neither has been much used. It is interesting that minimal use seems to be the rule both for Schoul $A$, where the locail USMES implementation is laboring under serious difficulicies, and School D, where the program is much-used and generally respected.
- Since a great deal of construction activity takes place at School B, this one instance demonstrates that, in an environment where USMES activity is both pervasive and intensive, construction can take place with no special facility. However, there is evidence that, in schools where empnasis on the USMES program is moderate or weak, teachers are sometimes deterred from construction activities if good Design lab facilities are not present and accessible.
- The facility of School E is physically adequate, facilitated by aides, but not rarticularly well funded. The facility of School D is very well funded but physically marginal. The facility of School $C$ is physically inadequete. not particularly well funded, and not heavily-staffed. It is probaily fair to say in the most general terms that the lab of Schorl $C$ is not adequate, but the labs of $D$ and $E$ are, according to the reforts of most respondents. This suggests an interesting rypothesis: . Merely to have a separate Design Lab space is not sufficient; however, if this space is convenient and large, or if funding exists for an active professional Design Lab manager, or if ** aides are readily available, the facility will probably be successful.

The second main question--to what extent does the success of an USMES implementation depend on the adequacy of its Design Lab facilities--can only be answered in the most general terms here, but the answer seems to depend on the administrative role of the person asking the question. From the principal's point of view, it would seem that a successful uSMES program can be fostered with' no Design Lab at all (as with School B) so' long as one'can use one's "whole school" as a Design Lab. From the point $0:$ view of teachers, the presence of satisfactory Design Lab facilities is/probably thought to be important for instituting a successful USMES implementation. Respondents from School A and $C$, where most USMES activity is initiated by individual teachers, made this very clear.

There is the statistical evidence in Part $A$ that, on the whole, USMES sessions were rated more "successful" when there were construction activities. However, hat evidence did not indicate whether or not Design Labs were used for the corstruction activity.

## Teacher's Aides

It is interesting to note that, in Schools A through D, teacher's aides played a small role in facilitating USMES activities, whereas in School $E$, aides were much used and held to be of the greatest importance. It is further interesting to note that, unlike certain universaily-recognized cesiderata
such as access to Design Jab space, the use of teacher's aides is not always Eelt to be important. Likewise, our intuitive feelings that the use of aides ought to be somewhat nelpful is balanced by statistical findings, reported ir. Part i of this stuly, which indicate not only that the presence of aides has ro significant general beneficial effect (Fage 6.1.14), but also that the presence of an aide does not even conduce to more construction activity taking place, on a session-by-session basis.

Our tentacive assessment of the matter is as follows. Based on the statistical data given in Part I of this report, it would appear that the absence of teacher's aides does not "spoil," or materially hamper, units actually attempted; on the other hand, the School E respondents indicate that the absence of teacher's aices would have deterred them from attempting certain units. Thus, it would appear that, if teacher's aides have an overall importance to USMES programs, it is in encouraging teachers to attempt more units, rather than materially affecting tie quality and success of units attempted. Furthermore, among the five schools studied, local conditions strongly influence the role of aides:

- In School E, a separate Desian Lab space was available but not staffed by a full-time manager; principal cooperation made getting aides easy; and classes were large. This, the potential role of teacher's aides was extremely significant.
- In School A, with its portable Design Lab cart, facilities for construction activity were poor, and there was no motive for physically dividing students during USMES sessions. Thus, aides were not used, and the need for them was not felt.
- In School 3 "the whole building" was used for construction activities. Likewise, USMES activities were perceived as the foundation of, rather than a challe:se to, order and discipline. No serious need for aides was perceived.
- School $C$ is somewhat .erplexing, since a remote but separate Design Lab facility did exist, and since discipline was a serious problem .but, for some reason, no need for teacher's aides was felt.
- In School D, the presence of a salaried and deeply involved. Design Lat manager, capable of bringing tools and expertise to the classroom, combined with the relatively small size and marginal physical character of separate Design Lab spaces, made the issue of dividing classes relatively noncritical. Hence, in School D, no particular emphasis on aides was in evidence.

USMES =hallenges, when conducted at schools A through $E$, appear to have been heid somewhat more frec :ently than the 2.0 times per week cited as a mean frequency in Part $I$ of this study. On the othe- hand, sessions especially Schools A, C, and E, appear to have been shorcer than the mean 61 minute length reported in Part I. The schools would appear tu fall in three main groups:

- Schools B and D. In general, respondents said little about the exar:t amount of time used for USMES session. The implication was tiat they were free to use time as available.
- Schools A and C. Respondents gave: yite detailed information about the number of minutes available for USMES session. In general, time periods cited were substantially shorter than the 6l-minute mean length reported in Part I of this study (:enerally 20-50 minutes): The implication was that teachers were expected to use specific time-s ots which could be justified ir terms of specific currisulum acti .ties.
- School E. Although scheduling seems quite rigorous and - essions (apparently) limıtew in length, a "mini-course" technique of scheduling USMES challenges intensively (in excess of 5 hours per week) for a several week period was employed, perhaps to correct for the fragmentation involved in st rt USMES sessions. The results seemed quite good.

Respondents from School B and D (except for one School B respondent whose class had special activities one and one half hours each day) reported that they had "enough time." Respondents elsewhere were divided, perhaps more according to individual teachers' concepticns of USMES and classroom skills than according to actual scheduling opportunities. The principal of school $C$ spoke of time as a "bis factor" in scheduling USMES; by this she meant she was concerned that USMES took too mu=h time.

Though this sentiment was not expressed by other respondents, it points to a problem which none of our schools could escape: namely, finding the time, sufficiently compact and sufficiently extensive: to support a good USMES implementation. External factors made this very easy in some cases, very difficult in others. A natural procedure is to schedule USMES as mathemat es, science, language arts, or social studies, according to the nature of the challenge being carried out. In mary instances, district-imposec constraints or cormunity attitudes made these subjects particularly resistant to discretionary change at the indivicual classroom level (or even at the school level). In general, however, no alternative strategies for scheduling were seen to exist.

Schools B, D, and E are most successful in soiving scheduling problems. Evidently the principal of School $\beta$ quietly treats USMES as "core" material from a curriculum-planning point of view, while she points to the dramatic
and extromely . sitive effects of USMES at her school as a disciplineand morale-builder. In general, she proceeds with the approval of her district, but without positive district support.

The USMES implementation at School D is varried on with more positive disirict invivement, both in terms of funds and overt suppert. The principal of School $D$ uses USMES as "core" curriculum material, but expiicitly poses the rather freely-structured USMES experience in science and mathematics as a complement to his very rigorous, highly-structured program in language arts. Under these conditions, he can quite accurately characterize School D as a "back-to-basics schools," giving him personal credibility in the eyes of conservative elements 10 h his community.

At School $E$, scheduling problems are softened by the use of aides, a high degree of cooperation among faculty, and a high degree of "saturation"-most teachers are USMES teachers. The principal of School $E$ is able to proceed without much concrete district support (at least in terms of funding), but has secured the approval of the Board of Education for his USMES activities. This approval, while it mey not relax district curriculum guidelines, does make USMES "respectable," so thet this principal is free to mount a very conspicuous USMES implementation, with aides and flexible scheduling and overt administrative sponsorship.

Sciool A is an unusual case, since district science objectives explicitly recognize USN 3 , while communty conflicts and parental pressures make it necessary to firs adcitional justification for the use of USMES as "core" curriculum. Nof stable arrangement nas been worked out, int the new zuincipal of School $A$ has speculated hat a place might be found fc: "interdisciplinary" study in the curriculum, if objectives could be identified and progress verified by testing.

In School C, little is done to "find time" for USMES at the school level but the School $C$ principal does not prevent individual teachers from doing USMES when they ca:..

From the information coilected on Schouls A through E, it woulci appear that a number of avenues exist whereby resourceful principals who wish to use USMES can schedule the program. It is interesting to note, however, that none of the tiree most successful methods (used in Schools $B, C$, and E) regresent formal alterations to curriculum guidelinc:. Conversely, in the . one instance (School A) where district guidelines explicitely sipport USMES, formal endorsement scems to afford little real support. Apparently the best solution to the scheduling problen is different under different circumstances: probably, also, there are situations in which USMES scheduling cannot reac ${ }^{2}$. satisfactory levels until basic prcolems of trust, conmunication, anc cocpexation have been to some axtent relieved.

Where uSMES sched:iing is taking place under difficult circumstances, and where such difficulties take the form of stringent accountability and planning constraints, USMES teachers and principals frequently report that they are hampered by being unable to offer an advance account of precisely
how much exposure to which basic disciplines will be afforded by a parEicular series of USMES class sessions. It is, of course, inherently the case for all real-problem-solving activities that the formal subject-matter to be "covered" in class sessions cannot be rigidly controlled, ana cannot therefore be infallibly predicted in advance.

Howevcr, it is possible to estimate probable amounts of basic skills exposure which may reasonably be expected for each hour of time devuted to a certair USMES unit, based on the 1043 Class Session Reports analyzed : $n$ Part I of this volume. One rable, showing such estimated value, is given below. The reader should be cautioned that certain radjcal simplifying assumptions underlie the estimates tabulated. They are the foliowi-g: (i) if any portion of a particular class session affords training in one of the basic skills areas sown such instruction is presumed to last throuchout that class session; (2) for purposes of computation, the mean session-length is taken to be 60 rather than 61, minutes; (3) USMES activities are explicitly assumed to be integrative-that is, it is explicitly assumed that instruction in more thin one basic skills area can ture place during a given time period.

Minutes of Basic Skills Instruction Per Hour of usmes，
by Selected Unies（Integrative）

		Longuace Ar：3	Science Conceprs	Social Studies	Number of Sessions
Unit	yathematica				


Bicycle Transportation	45.	53.	53.	60.	24
Classrocn Design	49.	45.	43.	52.	78
Classzoom Management	45.	38.	15.	15.	8
Consumer Reseazch	40.	38.	23.	38.	162
Describins People	36.	$4 \%$	29.	55.	38
Independently   Developed Unit	23.	39.	19.	49.	32
Desigaing for Humen Proportions	9.	17.	26.	43.	7


Dice Design	－ง．	48.	12.	0.	10
Getting There	40.	c．	8.	32.	15
Growiog Plants	39.	48.	46.	2r．	78
Lunch Lines	30.	54.	30.	51.	28
Manufacturing	47.	32.	27.	38.	164
Mass Communica＝ions	23.	30.	0.	3.	8
Nature Trasls	is．	15.	2.	2.	こう
Orientation	27	47.	11.	51.	42
Play Area Desicn Use	シ\％．	60.	23.	51.	1：
Protecting Props＝ご	87.	37.	26.	25.	37
Schoul suppiies		＋2．	26.	0.	15
Scnool 200	35.	ここ．	$3 ミ$.	$\therefore$ A．	12\％
Soft Drink Desige	53.	58.	35.	35.	25
Ways＝0 Learniteach	32.	49．	27.	こヵ．	85
Meȧher P̌ed：	5	55.	44.	24.	22
Totais／OEnex	$\because$	io．	29.	37.	$: \vdots$

(3) Since many educators may no: wish, a exiori, to aceept assumption (3) above, another tabulation is offeced below in which the contrary assump-tion-that instrustion in one basic skills area "plocles" instruction in another--is employed. For these purposes, where the total of mean basir skills instruction times for the four listed disciplines exceeds 60 minutes to the hour, all estinates have been proporitonetely reduced. The "blocking" ussumption reflected in the figures below may appear absurd to many readers. but it has the arvantage Df generating a set of "conservative" values, which need not be explicitiy justified in tems of integrarion:


sin：	Matiomax	Enarguatio Aことか	SO2ute concepes	social   stutsen	Namber $0 \leq$ Sessions



Dice Desigr．

Seteing There	3	$\therefore$ ．	$t$.	24.	15
Srewang Paures	3.	：s．	27.	$\therefore 0$.	75
Munch Itres	$\cdots$	：9．	こ，	$\pm 9$.	26
	－ 3	22.	$\because$ ：	$\therefore 6$	268


mass Comminicavions	$\therefore 2$	30.	0.	7.	$s$
Natuze Franis	$\therefore$ ？	2？．	6.	2.	39
Orientazion	22.	$\therefore 2$	5.	22.	42



School supeites	25.	$\because$ ，	$\therefore \because$	$\bigcirc$.	$2 E$
School 200	$\therefore$ ．	$\therefore 2$	： 5 ．	18.	110
Soft Daink Design	$\therefore$	－	2.	$: 2$.	25
Ways so tearsimeach	$\therefore$ ¢．	こ0．	$\because$.	：4．	Et


Heathex Freazetions	$2 \times$.	$\cdots$	$\therefore$ ：	5		



96

The reader :s cauctoned that bot Tables zon:ati oniy estimater, based On radical simplifying assimptors. soch are subyect to the chalienge that sual groups wrixns on disterent asperts of a probien may nos comunacace. and that basic skilis exposure sforded to sne groue may have no effect on another. "xkewise, the seconc Tabiv, whot assumes "blooking," does so in a somewht simptasiac sashion. simee in propurionately foduces mean values tacher than inspering ajeh session ser wijapie basie gkilis entries. and proportiofiteiy mexicine just hgse encries.
 The bsic ikith sastrution in a seal-probien-soiving curricuive eakes place in discrese episodes. ditergacing bict zather thai inherent in problem-solving acti.:ty. s:nce the mean nuber of busic sinile beinf freaced at any given

 giver 3bove. by seiecting arbicuaridy some fucction of an hour, assuming that







 piannins pimpses.


 EOKs axone tee Eve eases seue..e.


















ang situation is ironad since inis arnerma is himself guite sympathetic to usmes，chowgh conservitave fozexs in the fistrict are generally critical of such procrames．This ifory is compoundedfy yet one more remarkable fact： this principa：wants to davelop 05 ses as a／progran for gifted students，
 effective for helping slower students．




 innowacive and tadinona：would exist sife－by－side in a competitive rather Ehan a precmetive confict．Fresurabi＂in that situation，the best in tra－ ditional teaching as well as the best in inovitive teaching woula be demanded
 methods．on the othe hand． 3 sttwation gught arise in which sections com－
 the torm of accountability procucuzes．institutiro directives and guidelines， or purging meconcnial suachery and awninistrators．．In cases where a strugole
 eroup．one misht expee soth frouss（here，both conservative and＂innovative＂） to be sacertat fowazed sy afocsazy stratacems．
 seconk kina．Thus the furuze of ：Sves at this schooi is problematio，and

 and grandem＝eporing procecures，and survive perzodic ohanges of faculty and

 comarisen．veri simpie．The distaie＝netther helps nor hincers usurs．This disごミニ is＂inacua＝ive on gaper．＂hut dedicates funcs to programs in basic skinis instzirtion．Zr／senezai．the＂method＂of school 5 ＇s principai is to de usurs on tex or－abpority with school funcs．ter great success in using



 s＝une eqthasis on zasio stilis instzuEzion，at least in its day－to－day
 sehoci sustro gosis ountiy set dow，but is gurrentiy discouraged by newly－







School $D$ 's parent districe supports its usmes program. in our view, this is due not oniy to the Eact that sohooi $D$ 's district inherently favors real problem-solving, but also to the fact that uswes at school $D$ is part of a very successfil overall program. in which riohtiy-structured programs (for example, the language arts frogram) as well as Ereely-structured programs (for exanple, the USMES progran) Elay importanf roles. Thus, we Eeel, Srhool D's principal offers his district a strong, batanced "package" of which ijSMES is an integral pare.

School E sarries on its extensive uswes program without district finding.之ut with circimstances, USMES can assume a prominent place in the school's curziculum, and a rich school-wide administrative swport system can be used to facilitate JSNES: Eutchermore, ten her's fides can be employed freely (and in School E." they are so employed. sohook board support was initially sought and secured By the fersonal efforts of the present school principal.

Gbviously, Ehe Eoregoing is too diverse to support many generalizations. However, it is probably safe to say that 11 , aistrict support (and indeed, districe aporo:ail of real-problem-solving is no longer "autamatic" even where formali specified district goals and polizios would seem to make this inevitable; ial on the other hand, district aporove? can frequently (though pertaps not alwass) be securcd by a resourcefui prinupal, even in eistricts not partiowariy zisposed to reaj-sroblem-solving mograms, if obvious beneSits are aisplayed (Schooi 5 ) or a powerful, "balancea" program, incorporating structured and non-stzucturst activity, is offered (School D).

IE is a striking fact chat schooi distzices must be continualivemotivated EO suppore a Erosean su=h as uswas. Jie problems cf Schools A and c dxamatjcaily show how taristy evon overt. formal dis: "t support of innovative groorams ca: be iost.

## USMES AND ITS EFFECTS

It may be of some interest to review here our interview respondents' comments on the effects of USMES.

## USMES and the School Environment

Where USMES is successfully implemented, it generally has a sirong effect on the atmosphere of its school. Sometimes this effect is difficult to describe in concrete terms, but in other instances specific results are apparent. Thus, a metric coloring cookbook developed at Schoo? D through an USMES challenge received newspaper and radio pubiicity fo: tself, for USMES, and for the school. Likewise, at School B, many practical improvements to the living environment have taken place as a direct result of USMES challenge activity. Respondents at the relatively "successful" schools ( $B, D$, and $E$ ) commented quite frequently on the social effects of the program, that USMES "makes teachers feel better about this school," "gives children a sense of ownership," "controls the atmosphere of the school." " helps deal with a discipline problem which existed," etc. At sclicis s where USMES is relatively little used, or is used specifically on an inc , vidual basis by particular teachers (Schools A and C) USMES seems to have little effect on the school proper (though student effects may take place). In fact, principals of both these schools explicitly characterized USMES as having "little or no effect" on the school.

Only one respondent felt that USMES had a negative etfect on any school. A non-USMES teacher from one of the "successful" implementations, this respondent observed that "discipline seems to hava fallen apart a bit" as a result of usmes use. Conceivably, this was a reference to the personal styles of local USMES teachers only, since the same respondent characterized USMES as a "good icea and a good program."

## USMES and Student Effects

Anong the effects on students. noted by respondents were the following:

- "USMES kids' inquiry skills are more defined than others. They zero in on a topic."
- "usmes helps kids follow directions.
- "Kids" attack a problem better. They know what to do."
- "Socialization goes on between kids."
- "Slower kids come forwarc."
- "Kids with learning problems can become real leaders."

100

- "USMES gets kids to work well together."
- "Kids in USMES work better in groups."
- "Kids work in groups better after USMES; [one] can rell which [students] used USMES before."

This list is not complete, but represents the tone of respondents' replies. Negative effects of USMES on students were not cited even by respondents who were skeptical about the value of USMES.

## Possible Effects on Standardized Test Results

There was no quantitative evidence known to any respondents displaying a significant effect, positive or negative, of USMES on standardized test scores. The impression of some respondents seemed to be that USMES had improved tests scores. Some of the comments were as follows:

- " [Teachers] believed kids did better on Iowa tests."
- "Math scores are up: [teacher believes] USMES helped [test scores] ."
- "[Teacher] feels that USMES would improve reasoning and help on tests."
- "Class is improving in language arts and in basic mathematics."
- "USMES seems to have no effect on standardized tests."


## SUMMARY

The interpretive findings of this section were roughly as follows:

- Adequate Design Lab space, Design Lab tools, an active Design $\%$ Lab manager, and readily available help from aides are all important to the development of a strong USMES implementation. However, no one of these items is, in itself, essential for success. There is some evidence that, within this group, strength in one area can compensate for weakness in another.
- Finding time to schedule USMES activities is a matter of major importance in developing a successful USMES implementation. In general, school district curriculum guidelines, whether favorable to real problem solving or not, have little eftect on scheduling problems. More important factors are: school board support for USMES; and success on the part of the principal in integrating USMES with the total school program.
- USMES is more successful in some types of districts than in others. Among the less important factors seemed to be: district curriculum guidelines and other statements of educational philosophy ."on paper," concerning the importance of real problem solving; grade reporting forms (how "naturally" they-permit USMES reporting). Among the more important factors are: current "climate" of educational philosophy in the district (positive or negative towards real problem solving) ; extent to which the educational. activity of the district is implemented through pre-reporting accountability procedures (USMES is relatively hard to report on before it happens).

District financial support is very helpful in some cases, but other successful implementations do without it.

USMES seems to thrive in a "back-to-basics" environment if it is viewed as part of a basic-skills-oriented curriculum.

- Both student effects of USMES and general effects on the schools seem to be positive in the more successful implementations studied. In the less successful implementations, student effects are positive and school effects are negligible. No respondents interviewed in this study had attempted to test the significance of schooi or student effects by quantitative means.


## SPECULATIVEISSUES

Parents' response to USMES appeared to be of two types. Parents generally satisfied with their children's education were, at worst, content with USMES, and, at best, inclined to single out USMES for praise; parents generally dissatisfied about their children's education showed mixed fe-. actions, but sometimes singled out USMES for criticism. This division , (roughly between Schools B. D, and E on the one hand, and Schools A and E on the other) is not, perhaps, surprising, since USMES readily lends itself to praise ("real-problem-soiving, not artificial problem-solving") or cen-, sure ("letting children drift, as opposed to teaching them something").

Let us review parental reactions to USMES in the five-school study. The parents of students at School $A$ are as vocal, and as divided, about USMES as they are about everything else. Some parents are charmed by their children's enthusiasm for USMES. In many instances, however, parents are dissatisfied, and they do not see real-problem-solving as a "high-priority" ingredient in their children's education. Furthermore, parents at School A seem tc want continuing evidence of basic skills advancement for their chil-dren--something which can be best provided" rough a program which provides - for individual, rather than group, work, and daily homework assignments.
parents at school A reacted negatively when they saw a play written and produced by their childxen as part of an USMES challenge. Apparently they felt the play was "amateurish." Respondents who tried to account for this reaction suggested that parents were unaware this play was entirely the work of their children, and speculated that, had the play been properly introduced and its education value expounded on, no negative reaction would have been forthcoming. We are inclined to take the matter a bit more seriously.

It seems to us that parents' reactions here may reflect a rather general objection, motivated by strong "commonsense" arguments, which can be levelled against JSMES in environments such as School A. Children, it might be argued, learn from their environment; and when there exists an obvious discrepancy between the perceptions of children and the perceptions of older, presumably more enlightened, members of their culture on how something should be done
(in chis dase, for example, parsents parceivert the otedent play as "ams-
 made aware of the discropancy, no they man maker procosy torazd iearndmat culemzal norms. Thus, For example. frugents ibost learf to produce good olajs by producing the bet: play: postidele, endightaratity the oriticlam of adults.

Countar-arguments are easily fomm-that learning through real-geoblom-
 permanent, etc.--and in some sehools they are bormo cut with dramatic clarity. However. the applicability of these argumerto. ard the claxity with which studerit rosponse shows them to te trus, tarias from gehool to school. In the case of school A, much counter-argument may need to bo presented vertally, and with soms subticty. This, of courso, gros somewhat beyond merely informing parent- about USNES attioities.

A survey taken among School A parents of ono clang ghow that goz bedieve


The situation at school z in simplre. parerts suast the seheol, ind, furthermore, see the rosults of usues everrwinere. In gencral. they are not involved directly with usves, but thoy are wholly satisfied with it. Somes parents at school $B$ have actively refuested that their chilires be placos ir: USMES classes.

School $C$ parents are more disposed to participate actively in usmes-for example, parents have volunterered to stafe the uSMES Desizn lat. On the other hand, parental attitudes toward usmes are divided. Some parents are pleased, but some have fejt their children were in "too many usmes units." in general. it is our belief that negative parental response is a minor problem at School C, b: comparison with those arising from district influence. stisf. and changes in student population.

School D. It is interesting that, while parents at Schools $A$ and $C$ are to some extent cisturbed at the scantiness of individual grading and progresschecking under uSMES, parents at school $D$ are deiighted with usmes, havi:ig been promised that uSMES would be a special non-graded program. The contrast in parental expectations and psychology is.dramatic.

At School E, parents are pleasted and satisfied with usMes. iSMES is merely explained, rather than justifjed, to the local rih, and ushes is frer quently reported on ir grad: g g (inder appropriate areas) ard in conferences. parents are indirectly but repeatedly involved in usmes through their children's material-scrounging activities. It would appear that USMES, with explicit approval from the local Board of Education. is treated quite matter-oE-factly as a regular part of the curriculum of School E.

In general, it is ciwar that garental attitudes towaze usves vary enormously. Some of the causal variabies would seem to be:

- The degree to winian pazerts sxust tineir children's scioois


- Parones pergonnl expmexteions of thatirem:
- 

 tive USHES implementarion car be ansurnel of parerital mpgroual.

105

 what conchers invelote in tha pronram artwalig zelilecre ushes to be Though.





 senslong ard afsortow spme escape from atructured aspects o? the whocstionsi erivitonmen. Suen frformanta praiged tiviss, but apparentiy dif not regore is as a pramy educational activisy. pather.


 -ent.










 colient data" ser themseives.


 p=ocesm.



 troducing. "core" futeria. The princten of gene of the mose su=-



 or readizig. Pzesmabiy the? selt mat uswes veaches scmething. but
 prising that, qese responients wete non-tyses meachers.

 ney in mokits zranjeromes.




























































 Fist w

 が



165月5950					










 ＊＊．


 be zupossible to justisy the trouble of tmpiementing it.
 clear, an the course of many incerviews for this and ocher stixdies, that two pery different conceptions of usws, each or then presene in mant ye-
 many respondents, especiaily expentenced USNS Eeachers, bive come co wevi

 atticude. on the ower hand zany respondente geen co'zesard usurs as a
 and are inclined to Fiew USNS shaliegges and materiait mezely as Eateriai
 have "alwayg done usues mintorat knoung ing or vhat it is possivie to use


 If that they both ertain some nozine of axrencing ush beyon the set of









 inaged aEzactiveンy.










 solwitg process.







 Intusiss implementations-sweiea coule in our opinion be substantially

$\because$

While it is, of course, imonssibie to property zepresent the fuil zange of teachers' opinions concaraing isnas, of even the full zange of such opioions encountered in tie intomiens of his seudy: trofever, it is probably usefur to report and coment on nowe of these.

## TSMES anc Basie Sxilis

A wide =ange of opinion coscerning uswes and jesic sixilis instuetion exists among the zesponderrs. Scme respondents feis usues had nothing to do wth moze" subjuct matter, such as reading and other basic skills; some.felt USNE was properiy ${ }^{7}$ a $=$ einforement anc atilization of basic sicills, not iniEIator of basic skilis:" scme saw uSes as a siçificant integrating device for preseneinc and exeraisins basic skins in centraily inportant curriculum areas such as zathemtios, soience, language ares, and socian studies. This range of opinion not oniy refieces, kut also geremines, a corresponding range of tsmas jractice. It is easy in see how this happens, since a teacher
 give it mich size. iot to zeiy on is fit be expnsition of basic skill maEE=iais.
 skilis instrustion-for examie, at school 3 , a great deal of empasis is placet on tisues as a source of nocivinon, discipline, anc morale among staf: anc students, zowstex, even in such instances, it is not possible to derose iarge amounts of time to the progran ynless one trusts it las does the prin-
 sig éseces.

## 

Iz is Ehe fetrion of most respondents that correiations between usmes activi=ies and Eradi=ionaizu-designated subject areas couia be detailed and justifiec. Sewerai respondents Eel: chat an account of such cormeiations woule be use
 desfibe subject-area corfeiatuos son ofves unts. of course, it Es the zature of such a cuice" that it is the possibie reatmen of subject-area faterial in connection with garinular challenges, rachez than assured treatsent, which is sabulstec. Thut, such a cidide canno help seachers or aministrators to substantiato cuwxicuim comalations to skepticai gazents ou administra=ors.

 ciains expressec in teras of the genemai "subject" withamatics, science, ianguage ares, and social sicies.

Cpinion among responcents was civided on the subject on whether groupstructured real problem-solving is, by its nature, an education activity. or whether substantial supplementary activity is required to make it so. Most fele it was educational in its very nature, but some feared that students might "start maxing thirgs and stop leazning," or felt that, to profic from real problem-soiving activity, students needed to "see an end result" at an early stage. This iueter view was chiefly prevalent among inexperienced ofmes teachers or non-USMES seachers, but seemed to represent an "outsice". view.

## SEudene Invoivement

The powe of ustes so engage and invoive stucents of ail fypes semea to be its most-praised attribute. However. in some instarces (chiefly at School c) studeni invoivement was less incense. In that school; students were scmetimes "bozed" by Usmes and it was observec fhat studenes who were not alyacy leaders Erequen:1y むら~ not become invo!ved.

## Chaos

Et is ajmost inewitabie rhat some =eachers, pazticulariy those who have not seen uswes "un ciose" on perinaps have not seen $i=$ at ail, may fear USuES as a source of chaos. Thus, even at successEul uSMES schools such as School 3, we founa $a$ respondent who "coesn' $=$ want to have any pare in having kids Eun up the wail." This goint-of-view, whict sees USMES as someshat anarchic, is easy to uncers:and, since uswes locks anc somds less orderly than tradieional instruetion, and is ofganized in a way whet is comparatively difficult to explam :o a casual inguser.

Hany experienced Uswes seachers Eeel that USMES is quite orderiy, and seem to be fho:ougi:iy "adaictec" so using itwith their casses. Interestingy enouch, the existerce of such "acaicts." wo seem to derive a personal sense of effectiveness and adeguacy chzough conducting usums challenges, is an indizect indication that real problen-solving is subtly but pervasively strucFired, ana =ha= skilied usses zeachers derive satisfaction from being in
 action studies (Bosto: Zniversity, i973-74 USMES Stwey which showed that uswes student coments were iess oEven zandomy of destructively directed.

## USYES Materiais

In gemeral, fospondenes seem so have a higi opinion of usmas materials. (speciEicaily unes Uni= sooks). Cccasional coments so the effect. tha- there were "toc few" writs, and expzessions of'intezest on the part of experienced teachers $: n$ "keeping un with" newiyproduced materials uncerline the impoteance of having available materials dealing inth a suistantial numer of different chawenges at any particular school. Some resporidents made note of thè fact that ceztain challenges were "nuch better" than others. Activity at schal 3 was to a'great exsen= incepenaen: of gubinsied usums challenges.

Three general observations might be made concerning uSMES training and eariy experience;

- It was the most experienced responcents who were post impressed by the need for taining in uswes. Thus, it would appear that one of the most significant aspects of gaining experience in USMES is becoming aware of the full scope of the program.
- Many respondents, even those regarded by our investigator as successful teachers, reported being frightened by USMES when they began to use it--USMES was "a little scary at first;" teachers were "a little shaiky about getting into new units," or "reluctant to let kics lose." This seems to be a general subjective phenomenon, and indicates a need, on the part of new USMES teachers, for a certair degree of emotional support.
- Most respondents who had experience with USMES national workshops felt that these workshops had been more effective as a training grocedure tha: whatever means were locally available to potential USMES Eeachers on-site subjequently." They did feel, however, that locai means could be used to train new teachers.


## Overall Assessment of USMES

Responcents who offered an sverail assessment of the USMES program were, in general, quite positive. This is of course, not surprising, since the interviewer wás the project director under whom USMBS was developed. One aspect of the responses offered does seem worth remarking on, however. Respondents who had done USNES for some time, and who still Eelt positive about the program, generally feit more positive than anyone else, and assigned to USMES a sweeping role is their overall methods of teaching--USMES was "a way of life," a seacher would "always use USMES," and many others. This does not, at Eirst sight, appear strange. Naturally, those who continue longest in a program might likely be those who iike it best. However, certain possible classes of respondents seemed to be missing, such as: the wildiy enthusiastic new USMES teacher; the experienced teacher who had settled down using uSmes in a con'tinued, limited way; the respondent who didn't particularly enjoy uswes but sound it worked well, and matter-of-factly intended co continue usirg it: etc. This is, of course, consistent with the picture projected by developers and respordents aijke that USMES is a rewarding, demanding, pervasive program, capabie of taking an important place in the professional life of a teacher but equiring time to achiere full mastery.

One of the most important,issues in planning an USMES Implementation is simply: for what students ethnically, socially, in terms of grade level, in terms of aptitude, etc.) is USMES most effective? School Study respondents had little to say about éthnic and social variables, but did coment about grade level and scholastic aptitude.

Just as the statistical data in Part I of this study failed. to show either. that USMES was more successful with younger, or with older; students, so responjents interviewed were divided in this matter. USMES was reported variously to be "best for grades 3 through 6 ," "best for older students," "best for lower level students," "satisfactory with kindergarten students,n etc. The only view which emerged consistently, and was not contradicted, seems (strangely enough) to be the particular view that first grade USMES yields less satisfactory results than that done in other grades, including kindergarten. This rather surprising generalization is consistent with the data analyzed in Part I of this study-only 9 out of 1043 sessions reported on were first grade sessions, and an unusually large proportion of these were judged "relatively unsuccessful" in terms of the reporting criteria used.

Respondents were divided on the iissue of whether USMES was best for brighter; or for slower students. In general, the less privileged student populations from (Schools $E$ and D) seemed to give teachers the impression that USMES worked best with "brighter". or "more mature". students. The school o whose students were most privileged (and perhaps academically most talented), School A, seemed to convince its teachers that. USMES worked best with "slower" students, or students with learning problems. This may or may not reflect in some generai way the attitudes of teachers to more or less privileged populations of students.

## USMES AND THE "SUITABLE SCHOOL ENVIRONMENT"

If the primary aim in producing this study has been to afford teachers, principals, and school district administrators with information for improving USMES as it is locally implemented, a secondary aim has been to gain an understanding of where USMES is likely to thrive and where (perhaps) it should not be attempted.

## "Turnover" of Students and Staff

It is easiest to do good USMES if the turnover rate among staff and students is quite low... School $E$, an example where this is the case, shows how very good results can arise where these conditions are met. A great deal of successful USMES is done at School $E$ with small expense, little disruption of school operation, and a great deal of mutual support among staff. This is not surprising. First, students who have become familiar with USMES through doing: several challenges seem tio become "good at it,". and to profit more from subsequeni challenges than inexperienced students: second, learning to teach USMES takes a substantial. amount of experience; if most of the teachers at a particular USMES installation are only present for a short time, then it will necessarily be true that only a small number of really skillsul USMES teachers are available at any particular time. Also, and to some extent independent of the preceding, there appears to be something like a "critical mass" effect which pertains to the continued training and support of new uSmés teachers. Thus, it is extremely helpful for an inexperienced uSÑES teacher to be within easy ready of both practical support (a condition which is met where there are highly experienced USMES teachers) and emotional support (a condition which is met where there are relatively many USMES teachers present). Third, it is not only USMES teaching per se, but also the "adaptation" of USMES to any particular. school environment, which must be learned; this adaptation is complex because USMES is ccmplex. Therefore even a very experienced USMES teacher coming to a new school at which USMES is used, may be for a time less effective than another teacher who is familiar with both school and program.

A stable population of students is fai less critical to the successful performance of USMES than a stable group of teachers and administrators. Indeed, one of the chief reasons for the introduction of USMES at School B was to treat the alienation, discipline, and morale problems ingendered by the high turnover rate among School B students.

Stability among staff members is critical. The principal of School $D$, for example, was motivated by this very consideration when he used his discretionary powers to keep USMES teachers from-being triansferred out of his schocl, despite the hard feelings which might (and did) ensue. one most serious threat to the continued success of USMES at School B is that; if the principal leaves School B, the USMES implementation there may be very seriously weakened. The recently high turnover rate of teachers at School A has had a very bad effect on USMES at that school. Of course, if USMES was a commonly used schonl program, the effect of staff turnover would be much less. serious.

One of the most serious problems encountered by any school was the preemptive effect of very conservative attitudes, locally held, on instruction in basic skills. Particularly Schools $C$ and $A$ were restricted in their USMES practice by this situation. However, it was by no means clear that a vigorous local emphasis on traditional basic skills instruction posed an insuperable obstacle to the development of a strong USMES program.... For ex-. ample, we saw some indication that strong "back-to-basics" tendencies were present in the community containing School D. Yet, perhaps because of the diplomacy of School D's principal and perhaps because USMES at his school is an integral part of a program which also provides highly-structured teaching, School D was highly successful in having its USMES work supported.

Thus, strong local emphasis on traditional basic skills instruction seemed not to rule out successful USMES, but did create a situation in which positive action on the part of the school's principal was required.

Some of the issues discussed in this section are:

- USMES and Parents. Parents at the five schools vary dramatically in:
- attitudes towards non-graded activity
- expectations of children
- trust of the local school
- desire for constant monitoring of students' progress

Interactions between parents and programs such as USMES are complex. Fluctuations in the four variables above can "make" or "ruin" a particular USMES implementation.

- Teachers' conceptions of USMES. MOs teachers' views of USMES seem fundamentally correct, but incomplete when compared with the views held by program developers. This is believed to affect USMES teaching in a number of subtle ways.
- Teachers' opinions concerning USMES. Teachers' opinions of USMES are usually quite positive. Occasionally they are negative. Virtually no respondents. were "lukewarm" about USMES. There is considerable variability in teachers' opinions in the areas of basic skills, curriculum correlation, teacher training, and student autonomy. The causes of this variability are complex:
- The "suitable" USMES student. There is a great deal of disagreement concerning just what sort of student is likely to profit most from USMES. Interview reports'make it clear that no simple formulation, such as "USMES is best for brighter students," "USMES is best for older students." "USMES is best for disadvantagęd students," éc.. will suffice.
- The "suitable" school for USMES. Staff turnover and local attitudes towards basic skills instruction are particularly important factors. A high rate of staff turnover can be quite harmful, even in an otherwise satisfactory environment, unless an entire district is "saturated" with USMES. Local emphasis on basic skills per se is not a serious obstacle; however, a local basic skills emphasis does require positive action on the part of the school principal to justify the.role of USMES in basic skills instruction.


## Appendix Interview Questions

118

1. a) WIRT TMPACT DID YOUR USMES PROGRAM HRVE IN TEE AREAS BEIOW?
b) WEAT "PROCEDURES" WERE INSTITUIED IN THESE AREAS IN ORDER TO CARRY OUT YOUR USMES PROGRBY? IN ORDER TO AHEOW OTEER PROGRAMS TO CONTINUE WITBOUT INTERFERENCE?
c) EOW SUCCESSFUL WERE TEESE PROCEDURES? WERT WOULD YOD DO DIFFERENTLY NEXT TTME--WHAT ADVICE WOULD YCU GIVE TO OTHERS?

- SCHEDULING-providing for time that is adequate in texms of frequency, duration (team teaching: use of extra time during recess, lunch time), and flexibility (e.g.. when an extra half hour is needed for USMES). Scheduling changes of other subjects.
- THE RESEOF THE CURRICUUUM-interaction between USMES and other subject areas; constraints by district and/or school; changes made to sciool or district curriculum.
- SPACE--piacenent of Sesign Lab Eacilities in classrooms or school; freedom of movement of kids, ability to do tasks outside school property.
- FINANCES--Design Lab supplies; written materials; additional personnel; savings on other texts and materials.
- STAFF PLNNNING-choice of units affectea by previous units: meetings among teachers.
- STAFF TRAINING--information/training for other teachers, aides, and student teachers. Initial team trained by USNES.
- USE OF PERSONNEL-Change in roles, new assignments.
- COOPERATION--"HARYONY" (among teachers, students, principai, custočian; parents, school board, comunity).
- COMMNICATIONS (for planning as well as information)-among teachers, students, principal; custodyan; parents, school board conmunity.
- STUDENT ASSESSMENT PROCEDUEES--recording student activities; reporting to parents.
- ACCOUNTABILITY PROCEDURES-reporting to principal, district administrators, school board, and comunity.

OTHER AREAS
2. Describe che Eolloring factorg interviewe: sove any zeia=Ionghips between the need Ecr spesial proceures, or their scecess of Eaflume, and these factors.)


- DEMOGRAPMICS OF TEE CONHNITIES AND SIUOEXES.
- RMTITUDES-Of acministrators, teachers, parents, or others toward innovation, structure, or other troad aspects os school philosophy.
- yerzoDS-Genexaliy user to ineroduce new currisula into the schooz.
- WHY SCECOE BECANE MWOLVED IN USUES-history of involvenent, motivaEion of teachers and administrators.
- TYRE OF USMES TRATNENG-seceived by the seachers and administrators. Ronnie was at Hardy School R.T.i. (see page 4, Staff zraining) ,
- ECN USMES IS inpinvente in IHE sCaOO-Desigs Lab Eacizieies, units zaught, grade levels, time periods, numen of usmes teachers, usues materials available, suppore Erom aiministrators and parents.
- PLACE OE USNES IN CUFRTCULin--as science, interdisciplinary, supplementary, of core program. What do you want students to gain from their USNES experience? wrich oz these areas are most important so you?

OMER EMCTORS.

## GEMERAL QUESTECNS

3. Nhat seems to be the exfect of USMES on the schoot in general?
4. What seems to be the efsect of uswas of the students in generai?
5. That is the suture of USHES at your school?
6. How would USMES have to be diEferent to make it Eiv better into your school program? What is your personai opinion of CSMES at your school?
7. Iype of =1asscocin. Self-con=aineet some xids ail the Efme? Indifictal or seis-pacen worir?
8. What pzograms do yeu u5e in mith, languge a-z, eze,-befoze and afrer USMES?
9. Scheduing beqore and atter usnes.
10. Sc you have enough =ime? The =ight choce of bimi (flexibility)?
11. Did you keep any zecozd of kies or =iass probien-solvins experience?
12. Gradins anc pazent report 5oms.

§. Parent invo:uenen=.
 system.
 Conseraine fye sehnoi, aiserict. or state.
13. Eow is Desisn tib zun Bou does it woxi?

 combinify.
 usies?
14. If you 巨ropged -u?
15. Recomenda=ions-

[^0]:    

    * Reproductions supplied by EDRS are the best that can be made * * from the original document.
    

